# PHYTOCHEMICAL AND BIOLOGICAL STUDY ON CERTAIN PLANTS BELONGING TO FAMILY IRIDACEAE

Thesis submitted to

Faculty of Pharmacy Ain Shams University

In partial fulfillment of the requirements
For the degree of
Doctor of philosophy in Pharmaceutical Sciences
(In Pharmacognosy)

# By **Iriny Mohsen Mansour Ayoub**

B. Pharm. Sci. Faculty of Pharmacy, Ain Shams University, 2004

M. Pharm. Sci. Faculty of Pharmacy, Ain Shams University, 2010

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbassia, Cairo, Egypt
2015

## **Under the Supervision of**

# ABDEL NASSER B. SINGAB, Ph.D.

Professor of Pharmacognosy Dean of Faculty of Pharmacy Ain Shams University

# Mohamed M. El-Shazly, Ph.D.

Lecturer of Phrmacognosy Faculty of Pharmacy Ain Shams University

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbassia, Cairo, Egypt
2015

#### ACKNOWLEDGEMENT

First and foremost, I would like to thank God, the Almighty, for His guidance, providence and endless blessings that enabled me to proceed successfully throughout my research work.

I would like to express my profound gratitude and appreciation to the members of the advisory committee;

Prof. Dr. Abdel Nasser B. Singab, Professor of Pharmacognosy, Dean of Faculty of Pharmacy, Ain Shams University, who designed my research topic and closely followed up this work to its completion. I am very grateful for his patience and his willingness to help me despite his tremendous duties as a dean of the faculty and his teaching duties; he never turned me down when I asked for help. His active supervision, constructive criticism, insightful comments and constant guidance made this work possible. The manner in which Dr. Singab mentored me during my PhD work has challenged me to become a better scientist and to always seek quality rather than quantity research. I am really proud to be one of his students.

**Dr. Mohamed M. El-Shazly**, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for his devotion and kind supervision, conveying the true spirit of research. No words can express my deep gratitude to him for his valuable support and sincere guidance throughout my work. The brain-storming sessions and scientific discussions we had, helped me a lot throughout my work. His critical review has contributed a lot to the output of my write up. I aspire to become as successful, determined and ambitious as he is.

I wish to extend my immense appreciation and thanks to **Dr. Mohamed L. Ashour,** Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for his continuous support, encouragement and valuable advice throughout my work and for hosting the GC-MS and GC-FID analysis in the Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.

Special thanks are due to **Prof. Dr. Hesham El-Beshbishy**, Professor of Biochemistry, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia, for hosting the *in vivo* hepatoprotective and antidiabetic studies; **Prof. Dr. Fang-Rong Chang**, Professor of Pharmacognosy and Director of the Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, for hosting the NMR analysis as well as the *in vitro* anti-allergic assay; **Prof. Dr. Michael Wink**, Professor of Biology, Head of Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany, for hosting the GC-MS and GC-FID analysis; **Prof. Dr. Mei-Chin Lu**, Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan; the National

Museum of Marine Biology & Aquarium, Pingtung, Taiwan, for hosting the cytotoxicity studies.

My profound gratitude also goes to my colleague **Mohamed Saeed,** Assistant Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University for carrying out the ESI-MS measurements at the Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine University of Dusseldorf, Germany.

I would like to extend my profound gratitude and appreciation to my dear professors in the Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University;

No words can express my deep gratitude to **Prof. Dr. Mohamed M. Al-Azizi**, for setting an example to how a dedicated professor should be. His immense knowledge and unique character had a great impact on me in both academic and life aspects. His enthusiasm, dedication and commitment have always inspired me throughout my career.

Special thanks are due to **Assoc. Prof. Dr. Sherweit El-Ahmady**, Acting Head of Department, her spirit, devotion, passion and the utter desire to help and support have always been an outstanding inspiration to me; **Assoc. prof. Dr Omayama El-Dahashan** and **Dr. Rola Milad**, for their valuable advice, encouragement and friendly help; **Dr. Sherif Ebada**, **Dr. Eman Kamal** and **Dr. Haidy Gad** for their kind support and cooperation.

My deep gratitude goes to my friend and colleague **Dr. Fadia Youssef**, my lab mate, for her constant support and encouragement. Many thanks and appreciation is due to all my colleagues in the Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for their cooperation, support and the friendship we share.

I wish to extend my love and gratitude to my parents, **Fr. Shenouda Ayoub** and **Eng. Mona Bassilious** for their endless love, unconditional support and all the sacrifices they have made on my behalf. Their prayers for me were what sustained me that far. They have always inquired about my progress and encouraged me to do what I was most passionate about, scientific research, without their nurturing love, I would not have been here in the first place. I am also very grateful to my loving sister **Mariam Ayoub** for her loving support and continuous encouragement. If we ever had a family motto that would have been – *If there's a will, there's a way* – a philosophy of life I have been carrying with me every day. Special thanks are due to my grandmother for her endless love and unlimited kindness.

No words can express my deep gratitude and appreciation for my beloved husband **Dr. John Samir Abdou.** His immeasurable assistance, patience and understanding allowed me to focus my efforts on my work. Without his constant support and continuous encouragement none of this work would have been possible.

I am mostly thankful to my lovely daughters **Angelina** and **Karen**. Though now they are still very young to really comprehend how grateful I am to them, no matter how long my working days were, their cheering big smiles and loving hugs would melt away any exhaustion or disappointment, like they never existed. They have always been my source of everlasting joy.

"The LORD has done great things for us, and we are filled with joy."
(Psalms 126:3)

*Iriny M. Ayoub*Cairo, 2015

## TABLE OF CONTENTS

| ables  igures  bbreviations  ction  work  are review: Natural products from Iridaceae: An overview  Phytochemistry  Biological activities  Botanical Description of Family Iridaceae  Dietes bicolor (Steud.) Sweet ex Klatt  Chasmanthe aethiopica (L.) N.E. Br  Is Apparatus and Methods  Apparatus  Methods  ER I  ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt.  aceae)  Introduction |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bbreviations                                                                                                                                                                                                                                                                                                                                                                                                            |
| work  The review: Natural products from Iridaceae: An overview  Phytochemistry  Biological activities  Botanical Description of Family Iridaceae  Dietes bicolor (Steud.) Sweet ex Klatt  Chasmanthe aethiopica (L.) N.E. Br  Is Apparatus and Methods  Materials  Apparatus  Methods  ER I  Degical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt.  aceae)                                       |
| work  The review: Natural products from Iridaceae: An overview  Thytochemistry  Biological activities  Botanical Description of Family Iridaceae  Dietes bicolor (Steud.) Sweet ex Klatt  Chasmanthe aethiopica (L.) N.E. Br  Is Apparatus and Methods  Materials  Apparatus  Methods  ER I  Ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt.  aceae)                                        |
| Phytochemistry Biological activities Botanical Description of Family Iridaceae Dietes bicolor (Steud.) Sweet ex Klatt Chasmanthe aethiopica (L.) N.E. Br Is Apparatus and Methods Materials Apparatus Methods ER I Digical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                  |
| Phytochemistry Biological activities Botanical Description of Family Iridaceae Dietes bicolor (Steud.) Sweet ex Klatt Chasmanthe aethiopica (L.) N.E. Br Is Apparatus and Methods Materials Apparatus Methods ER I Degical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                  |
| Biological activities Botanical Description of Family Iridaceae Dietes bicolor (Steud.) Sweet ex Klatt Chasmanthe aethiopica (L.) N.E. Br Ils Apparatus and Methods Apparatus Apparatus Methods ER I Degical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                                |
| Botanical Description of Family Iridaceae Dietes bicolor (Steud.) Sweet ex Klatt Chasmanthe aethiopica (L.) N.E. Br Is Apparatus and Methods Materials Apparatus Methods ER I Degical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                                                       |
| Dietes bicolor (Steud.) Sweet ex Klatt Chasmanthe aethiopica (L.) N.E. Br Is Apparatus and Methods Apparatus Apparatus Methods ER I Ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                                                                                                  |
| Chasmanthe aethiopica (L.) N.E. Br  Is Apparatus and Methods.  Materials  Apparatus  Methods  ER I  Ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt.  aceae)                                                                                                                                                                                                                                 |
| Is Apparatus and Methods  Materials  Apparatus  Methods  ER I  Ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                                                                                                                                                                       |
| Is Apparatus and Methods  Materials  Apparatus  Methods  ER I  Ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                                                                                                                                                                       |
| Materials Apparatus Methods ER I Ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt. aceae)                                                                                                                                                                                                                                                                                                     |
| Apparatus  Methods  ER I  Ogical Study of Various Extracts of Dietes bicolor (Steud.) Sweet ex Klatt.  aceae)                                                                                                                                                                                                                                                                                                           |
| Methods                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ogical Study of Various Extracts of <i>Dietes bicolor</i> (Steud.) Sweet ex Klatt. aceae)                                                                                                                                                                                                                                                                                                                               |
| aceae)                                                                                                                                                                                                                                                                                                                                                                                                                  |
| aceae)                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ntroduction                                                                                                                                                                                                                                                                                                                                                                                                             |
| M O G G C M O M O M O M O M O M O M O M O M O M                                                                                                                                                                                                                                                                                                                                                                         |
| Experimental                                                                                                                                                                                                                                                                                                                                                                                                            |
| .1.Preparation of <i>D. bicolor</i> extracts and fractions                                                                                                                                                                                                                                                                                                                                                              |
| .2.Biological activity experiments                                                                                                                                                                                                                                                                                                                                                                                      |
| Results                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .1.Antimicrobial activity                                                                                                                                                                                                                                                                                                                                                                                               |
| .2.Cytotoxicity                                                                                                                                                                                                                                                                                                                                                                                                         |
| .3.Anti-allergic activity                                                                                                                                                                                                                                                                                                                                                                                               |
| .4.In vivo anti-inflammatory activity                                                                                                                                                                                                                                                                                                                                                                                   |
| .5.In vitro antioxidant activity                                                                                                                                                                                                                                                                                                                                                                                        |
| .6.In vivo hepatoprotective activity                                                                                                                                                                                                                                                                                                                                                                                    |
| .7.In vivo antidiabetic activity                                                                                                                                                                                                                                                                                                                                                                                        |
| Discussion                                                                                                                                                                                                                                                                                                                                                                                                              |
| .7.In vivo antidiabetic activity                                                                                                                                                                                                                                                                                                                                                                                        |
| ER II                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mical Composition of the Leaf Extracts of <i>Dietes bicolor</i> (Steud.) Sweet ex                                                                                                                                                                                                                                                                                                                                       |
| t. and Chasmanthe aethiopica (L.) N.E. Br. (Iridaceae)                                                                                                                                                                                                                                                                                                                                                                  |
| utus direction                                                                                                                                                                                                                                                                                                                                                                                                          |
| ntroduction                                                                                                                                                                                                                                                                                                                                                                                                             |
| Experimental  Results and discussion                                                                                                                                                                                                                                                                                                                                                                                    |
| .2<br>.6<br>.7<br>Di<br>En                                                                                                                                                                                                                                                                                                                                                                                              |

| 3.2.Phytochemical study of <i>D. bicolor</i> leaves   |                                                                            | 119 |
|-------------------------------------------------------|----------------------------------------------------------------------------|-----|
| 3.2.1. Struct                                         | ural elucidation of compounds isolated from various fractions of D.        |     |
| bicolo                                                | r leaf extract                                                             | 120 |
| 3.2.1.1.                                              | Compound 1: Orobol 7,3'-dimethyl ether                                     | 120 |
| 3.2.1.2.                                              | Compound 2: 3-Hydroxy-5-methoxy-6,7-methylenedioxyflavanone                | 130 |
| 3.2.1.3.                                              | Compound 3: 3,5,7-Trihydroxy-8-methoxyflavanone                            | 147 |
| 3.2.1.4.                                              | Compound <b>4</b> : 3-Hydroxy-5,7-dimethoxy flavanone                      | 165 |
| 3.2.1.5.                                              | Compound 5: Lanaroflavone                                                  | 170 |
| 3.2.1.6.                                              | Compound 6: Robustaflavone                                                 | 174 |
| 3.2.1.7.                                              | Compound 7: Amentoflavone                                                  | 186 |
| 3.2.1.8.                                              | Compound 8: $\beta$ -Sitosterol                                            | 200 |
| 3.2.1.9.                                              | Compound 9: Vitexin                                                        | 203 |
| 3.3.Standardization of <i>D. bicolor</i> leaf extract |                                                                            | 211 |
|                                                       |                                                                            |     |
| CHAPTER I                                             | II                                                                         |     |
| Chemical                                              | Composition and Biological Activity of the Essential Oils of <i>Dietes</i> |     |
| bicolor (I                                            | ridaceae)                                                                  |     |
| 1. Introd                                             | uction                                                                     | 214 |
| 2. Result                                             | S                                                                          | 215 |
| 2.1.GC/F                                              | TID and GC/MS analyses of the oil                                          | 215 |
| 2.2.Antir                                             | microbial activity                                                         | 226 |
|                                                       | ssion                                                                      | 228 |
| <b>General sum</b>                                    | mary                                                                       | 230 |
| Conclusions                                           | and recommendations                                                        | 239 |
| References                                            |                                                                            | 242 |
| Arabic sumn                                           | nary                                                                       |     |

#### LIST OF TABLES

| <b>Table</b> (1):  | Isoflavonoids (1-58) isolated from family Iridaceae                                 | 8   |
|--------------------|-------------------------------------------------------------------------------------|-----|
| <b>Table (2):</b>  | Substitution pattern of isoflavones (1-55) isolated from family Iridaceae           | 12  |
| <b>Table (3):</b>  | Rotenoids and coumaronochromones (59-64) isolated from family                       |     |
|                    | Iridaceae                                                                           | 16  |
| <b>Table (4):</b>  | Flavonoids (65-136) isolated from family Iridaceae                                  | 19  |
| <b>Table (5):</b>  | Substitution pattern of flavonoids (65-97) isolated from family                     |     |
|                    | Iridaceae                                                                           | 24  |
| <b>Table (6):</b>  | Terpenoids (137-216) isolated from family Iridaceae                                 | 28  |
| <b>Table (7):</b>  | Quinones (217-256) isolated from family Iridaceae                                   | 35  |
| <b>Table (8):</b>  | Naphthalene derivatives (257-264) isolated from family Iridaceae                    | 39  |
| <b>Table (9):</b>  | Xanthones (265-273) isolated from family Iridaceae                                  | 40  |
| <b>Table (10):</b> | Simple phenolics (274-292) isolated from family Iridaceae                           | 42  |
| <b>Table</b> (11): | Stilbenes (293-301) isolated from family Iridaceae                                  | 43  |
| <b>Table (12):</b> | Mean inhibition zones of various extracts of D. bicolor against different           |     |
|                    | microorganisms using the agar well diffusion method                                 | 91  |
| <b>Table (13):</b> | Minimum inhibitory concentrations (MICs) of various extracts of D.                  |     |
|                    | bicolor against different microorganisms using the agar plate method                | 92  |
| <b>Table (14):</b> | $IC_{50}$ values (µg/ml) for the cytotoxic effects of D. bicolor crude extracts     |     |
|                    | and fractions on the growth of different cancer cells                               | 93  |
| <b>Table (15):</b> | Percentage inhibition of $\beta$ -hexosaminidase release by $D$ . $bicolor$ total   |     |
|                    | extracts and fractions in A23187 sensitized RBL-2H3 cell line                       | 95  |
| <b>Table (16):</b> | Percentage inhibition of $\beta$ -hexosaminidase release by $D$ . $bicolor$         |     |
|                    | fractions in IgE sensitized RBL-2H3 cell line                                       | 96  |
| <b>Table (17):</b> | Effect of <i>D. bicolor</i> leaf extract and fractions on carrageenan-induced rat   |     |
|                    | paw edema                                                                           | 97  |
| <b>Table (18):</b> | Effect of intraperitoneal injection of <i>D. bicolor</i> extracts and fractions (20 |     |
|                    | mg/kg) on TAM-induced alterations in serum ALT, AST, TBARS and                      |     |
|                    | TNF- $\alpha$ levels                                                                | 100 |
| <b>Table (19):</b> | Effect of intraperitoneal injection of <i>D. bicolor</i> extracts and fractions (20 |     |
|                    | mg/kg/day) and GLB (600 μg/kg/day) on FBG and serum insulin levels                  |     |
|                    | in STZ-diabetic rats                                                                | 103 |
| Table (20):        | Results of phytochemical screening of <i>Dietes bicolor</i> leaves                  | 114 |

| <b>Table (21):</b> | Results of phytochemical screening of Chasmanthe aethiopica leaves           | 118 |
|--------------------|------------------------------------------------------------------------------|-----|
| <b>Table (22):</b> | Volatile constituents identified in the essential oils of D. bicolor flowers |     |
|                    | (DBF), leaves (DBL) and rhizomes (DBR)                                       | 218 |
| <b>Table (23):</b> | The half maximal inhibitory concentration (IC <sub>50</sub> ) and minimum    |     |
|                    | inhibitory concentrations (MICs) of the essential oils of D. bicolor         |     |
|                    | leaves and flowers against different microorganisms using the broth          |     |
|                    | micro-dilution method.                                                       | 227 |

## LIST OF FIGURES

| <b>Fig.</b> (1):  | Isoflavonoids (56-58) isolated from family Iridaceae                                  | 15 |
|-------------------|---------------------------------------------------------------------------------------|----|
| Fig. (2):         | Rotenoids and coumaronochromones (59-64) isolated from family                         |    |
|                   | Iridaceae                                                                             | 16 |
| <b>Fig.</b> (3):  | Flavonols, flavanones, dihydroflavonols and peltogynoids (98-117)                     |    |
|                   | isolated from family Iridaceae                                                        | 25 |
| Fig. (4):         | Anthocyanins (118-131) isolated from family Iridaceae                                 | 26 |
| Fig. (5):         | Biflavonoids (132-136) isolated from family Iridaceae                                 | 26 |
| Fig. (6):         | Biosynthesis of iridals                                                               | 27 |
| Fig. (7):         | Monocyclic iridals, monocyclic iridal esters and iridal glycosides (137-              |    |
|                   | 168) isolated from family Iridaceae                                                   | 32 |
| Fig. (8):         | Bicycloiridals (169-176) isolated from family Iridaceae                               | 33 |
| Fig. (9):         | Spiroiridals and their derivatives (177-194) isolated from family                     |    |
|                   | Iridaceae                                                                             | 33 |
| Fig. (10):        | Pentacyclic triterpenoids (195-201) isolated from family Iridaceae                    | 34 |
| Fig. (11):        | Other terpenoids (202-216) isolated from family Iridaceae                             | 34 |
| Fig. (12):        | Quinones (217-256) isolated from family Iridaceae                                     | 38 |
| Fig. (13):        | Naphthalene derivatives (257-264) isolated from family Iridaceae                      | 39 |
| Fig. (14):        | Xanthones (265-273) isolated from family Iridaceae                                    | 41 |
| Fig. (15):        | Simple phenolics (274-292) isolated from family Iridaceae                             | 43 |
| Fig. (16):        | Stilbenes (293-301) isolated from family Iridaceae                                    | 44 |
| <b>Fig.</b> (17): | Morphology of Dietes bicolor: (A) D. bicolor whole plant; (B) D. bicolor              |    |
|                   | leaves and flowering branch; (C) D. bicolor flowering branch; (D) D.                  |    |
|                   | bicolor flower x 0.7; (E) D. bicolor rhizomes                                         | 60 |
| Fig. (18):        | Morphology of Chasmanthe aethiopica: (A) C. aethiopica aerial parts;                  |    |
|                   | (B) C. aethiopica leaves and bulb; (C) C. aethiopica flower; (D) C.                   |    |
|                   | aethiopica bulb                                                                       | 63 |
| Fig. (19):        | Percentage inhibition of $\beta$ -hexosaminidase release by $D$ . $bicolor$ total     |    |
|                   | extracts and fractions in A23187 sensitized RBL-2H3 cell line measured                |    |
|                   | spectrophotometrically at 405 nm                                                      | 95 |
| Fig. (20):        | Percentage inhibition of $\beta$ -hexosaminidase release by $D$ . $bicolor$ fractions |    |
|                   | in IgE sensitized RBL-2H3 cell line, measured spectrophotometrically at               |    |
|                   | 405 nm                                                                                | 96 |

| <b>Fig.</b> (21): | Effect of <i>D. bicolor</i> leaf extract and fractions on carrageenan-induced rat               |     |
|-------------------|-------------------------------------------------------------------------------------------------|-----|
|                   | paw edema                                                                                       | 98  |
| Fig. (22):        | Total antioxidant capacity of D. bicolor leaf extract and fractions in paw                      |     |
|                   | edema exudates                                                                                  | 98  |
| Fig. (23):        | DPPH• radical scavenging capacity of D. bicolor extracts and fractions                          |     |
|                   | measured spectrophotometrically at 517 nm.                                                      | 99  |
| Fig. (24):        | Effect of intraperitoneal injection of D. bicolor extracts and fractions (20                    |     |
|                   | mg/kg) on TAM-induced alterations in serum ALT (A) and AST (B)                                  |     |
|                   | levels                                                                                          | 101 |
| Fig. (25):        | Effect of intraperitoneal injection of D. bicolor extracts and fractions (20                    |     |
|                   | mg/kg) on TAM-induced alterations in serum TBARS (C) and TNF- $\alpha$ (D)                      |     |
|                   | levels                                                                                          | 102 |
| Fig. (26):        | Effect of intraperitoneal injection of <i>D. bicolor</i> extracts and fractions (20             |     |
|                   | mg/kg/day) and GLB (600 μg/kg/day) on FBG (A) and serum insulin (B)                             |     |
|                   | levels in STZ-diabetic rats                                                                     | 104 |
| Fig. (27):        | Scheme showing the extraction and chromatographic analysis of Dietes                            |     |
|                   | bicolor leaves                                                                                  | 115 |
| Fig. (28):        | Scheme showing the chromatographic analysis of the DCM fraction of                              |     |
|                   | Dietes bicolor leaf aqueous methanolic extract                                                  | 116 |
| Fig. (29):        | Scheme showing the chromatographic analysis of the <i>n</i> -butanol fraction of                |     |
|                   | Dietes bicolor leaf aqueous methanolic extract                                                  | 117 |
| Compound          | 1                                                                                               |     |
| Fig. (30):        | ESI-MS <sup>+</sup> spectrum of orobol 7,3'-dimethyl ether,                                     | 122 |
| Fig. (31a):       | <sup>1</sup> H NMR spectrum of orobol 7,3'-dimethyl ether (CD <sub>3</sub> OD)                  | 123 |
| Fig. (31b):       | <sup>1</sup> H NMR spectrum of orobol 7,3'-dimethyl ether (CD <sub>3</sub> OD)                  | 124 |
| Fig. (32):        | <sup>13</sup> C NMR spectrum of orobol 7,3'-dimethyl ether (CD <sub>3</sub> OD)                 | 125 |
| Fig. (33a):       | HMBC spectrum of orobol 7,3'-dimethyl ether (CD <sub>3</sub> OD)                                | 126 |
| Fig. (33b):       | HMBC spectrum of orobol 7,3'-dimethyl ether (CD <sub>3</sub> OD)                                | 127 |
| Fig. (34):        | <sup>1</sup> H, <sup>1</sup> H COSY spectrum of orobol 7,3'-dimethyl ether (CD <sub>3</sub> OD) | 128 |
| Fig. (35):        | NOESY spectrum of orobol 7,3'-dimethyl ether (CD <sub>3</sub> OD)                               | 129 |
| Compound          | 2                                                                                               |     |
| Fig. (36):        | ESI-MS <sup>+</sup> spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                          |     |
|                   | flavanone                                                                                       | 132 |

| Fig.(37a):       | <sup>1</sup> H NMR spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                  |
|------------------|----------------------------------------------------------------------------------------|
|                  | flavanone (CD <sub>3</sub> OD)                                                         |
| Fig.(37b):       | <sup>1</sup> H NMR spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                  |
|                  | flavanone (CD <sub>3</sub> OD)                                                         |
| Fig. (38a):      | <sup>1</sup> H NMR spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                  |
|                  | flavanone (pyridine- $d_5$ )                                                           |
| Fig. (38b):      | <sup>1</sup> H NMR spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                  |
|                  | flavanone (pyridine-d <sub>5</sub> )                                                   |
| Fig. (39a):      | <sup>13</sup> C NMR spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                 |
|                  | flavanone (pyridine- $d_5$ )                                                           |
| Fig. (39b):      | C NMR spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                               |
|                  | flavanone (pyridine- $d_5$ )                                                           |
| Fig. (40):       | DEPT 135 spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                            |
| 11g. (40).       | flavanone (pyridine- $d_5$ )                                                           |
| Fig. (41):       | DEPT 45 spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                             |
| <b>g</b> · ( / · | flavanone (pyridine- $d_5$ )                                                           |
| Fig. (42):       | DEPT 90 spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                             |
| <b>8</b> ( )     | flavanone (pyridine- $d_5$ )                                                           |
| Fig. (43)        | HSQC spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxyflavanone                       |
|                  | (pyridine- $d_5$ )                                                                     |
| Fig. (44a):      | HMBC spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxyflavanone                       |
|                  | (pyridine- $d_5$ )                                                                     |
| Fig. (44b):      | HMBC spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxyflavanone                       |
|                  | (pyridine- $d_5$ )                                                                     |
| Fig. (45):       | <sup>1</sup> H, <sup>1</sup> H COSY spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy |
| 6 ( ·/·          | flavanone (pyridine- $d_5$ )                                                           |
| Fig. (46):       | NOESY spectrum of 3-hydroxy-5-methoxy-6,7-methylenedioxy                               |
| <i>5</i> 、 /     | flavanone (pyridine- $d_s$ )                                                           |

| Compound                | 3 (New compound)                                                                                                       |      |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|------|
| Fig. (47a):             | ESI-MS spectrum of 3,5,7-trihydroxy-8-methoxyflavanone                                                                 | 150  |
| Fig. (47b):             | ESI-MS <sup>2</sup> spectrum of 3,5,7-trihydroxy-8-methoxyflavanone                                                    | 151  |
| Fig. (47c):             | ESI-MS <sup>2</sup> fragments of 3,5,7-trihydroxy-8-methoxyflavanone                                                   | 152  |
| Fig. (48):              | <sup>1</sup> H NMR spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (CDCl <sub>3</sub> )                                | 153  |
| Fig. (49a):             | $^{1}$ H NMR spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_{5}$ )                                      | 154  |
| Fig. (49b):             | $^{1}$ H NMR spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_{5}$ )                                      | 155  |
| Fig. (50a):             | <sup>13</sup> C NMR spectrum of 3,5,7-trihydroxy-8-methoxyflavanone                                                    |      |
|                         | (pyridine- $d_5$ )                                                                                                     | 156  |
| Fig. (50b):             | $^{13}$ C NMR spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_5$ )                                       | 157  |
| Fig. (51):              | DEPT spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_5$ )                                                | 158  |
| Fig. (52):              | HSQC spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_5$ )                                                | 159  |
| Fig. (53a):             | HMBC spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_5$ )                                                | 160  |
| Fig. (53b):             | HMBC spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_5$ )                                                | 161  |
| Fig. (54):              | <sup>1</sup> H, <sup>1</sup> H COSY spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- <i>d</i> <sub>5</sub> ) | 162  |
| Fig. (55a):             | NOESY spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_5$ )                                               | 163  |
|                         |                                                                                                                        |      |
| Fig. (55b):             | NOESY spectrum of 3,5,7-trihydroxy-8-methoxyflavanone (pyridine- $d_5$ )                                               | 164  |
| Compound                |                                                                                                                        | 1.67 |
| Fig. (56a):             | <sup>1</sup> H NMR spectrum of 3-hydroxy-5,7-dimethoxy flavanone (CD <sub>3</sub> OD)                                  | 167  |
| Fig. (56b):             | <sup>1</sup> H NMR spectrum of 3-hydroxy-5,7-dimethoxy flavanone (CD <sub>3</sub> OD)                                  | 168  |
| Fig. (56c):<br>Compound | <sup>1</sup> H NMR spectrum of 3-hydroxy-5,7-dimethoxy flavanone (CD <sub>3</sub> OD)                                  | 169  |
| Fig. (57):              | <sup>1</sup> H NMR spectrum of lanaroflavone (CD <sub>3</sub> OD)                                                      | 172  |
| Fig. (58):              | <sup>13</sup> C NMR spectrum of lanaroflavone (CD <sub>3</sub> OD)                                                     | 173  |
| Compound                |                                                                                                                        | 1,0  |
| Fig. (59):              | ESI-MS <sup>+</sup> spectrum of robustaflavone                                                                         | 176  |
| Fig. (60a):             | <sup>1</sup> H NMR spectrum of robustaflavone (CD <sub>3</sub> OD)                                                     | 177  |
| Fig. (60b):             | <sup>1</sup> H NMR spectrum of robustaflavone (CD <sub>3</sub> OD)                                                     | 178  |
| Fig. (61a):             | <sup>13</sup> C NMR spectrum of robustaflavone (CD <sub>3</sub> OD)                                                    | 179  |

| Fig. (61b):       | <sup>13</sup> C NMR spectrum of robustaflavone (CD <sub>3</sub> OD)                              | 180 |
|-------------------|--------------------------------------------------------------------------------------------------|-----|
| Fig. (62):        | HSQC spectrum of robustaflavone (CD <sub>3</sub> OD)                                             | 181 |
| Fig. (63a):       | HMBC spectrum of robustaflavone (CD <sub>3</sub> OD)                                             | 182 |
| Fig. (63b):       | HMBC spectrum of robustaflavone (CD <sub>3</sub> OD)                                             | 183 |
| Fig. (64):        | <sup>1</sup> H, <sup>1</sup> H COSY spectrum of robustaflavone (CD <sub>3</sub> OD)              | 184 |
| Fig. (65):        | NOESY spectrum of robustaflavone (CD <sub>3</sub> OD)                                            | 185 |
| Compound 7        | •                                                                                                |     |
| Fig. (66):        | ESI-MS <sup>+</sup> spectrum of amentoflavone                                                    | 188 |
| <b>Fig.</b> (67): | <sup>1</sup> H-NMR spectrum of amentoflavone (CD <sub>3</sub> OD)                                | 189 |
| Fig. (68a):       | <sup>1</sup> H NMR spectrum of amentoflavone (pyridine- <i>d</i> <sub>5</sub> )                  | 190 |
| Fig. (68b):       | <sup>1</sup> H NMR spectrum of amentoflavone (pyridine- <i>d</i> <sub>5</sub> )                  | 191 |
| Fig. (69a):       | <sup>13</sup> C NMR spectrum of amentoflavone (pyridine- <i>d</i> <sub>5</sub> )                 | 192 |
| Fig. (69b):       | <sup>13</sup> C NMR spectrum of amentoflavone (pyridine- <i>d</i> <sub>5</sub> )                 | 193 |
| Fig. (70):        | HSQC spectrum of amentoflavone (pyridine-d <sub>5</sub> )                                        | 194 |
| Fig. (71a):       | HMBC spectrum of amentoflavone (pyridine-d <sub>5</sub> )                                        | 195 |
| Fig. (71b):       | HMBC spectrum of amentoflavone (pyridine-d <sub>5</sub> )                                        | 196 |
| Fig. (71c):       | HMBC spectrum of amentoflavone (pyridine-d <sub>5</sub> )                                        | 197 |
| Fig. (72):        | <sup>1</sup> H, <sup>1</sup> H COSY spectrum of amentoflavone (pyridine- <i>d</i> <sub>5</sub> ) | 198 |
| Fig. (73):        | NOESY spectrum of amentoflavone (pyridine-d <sub>5</sub> )                                       | 199 |
| Compound 8        | 3                                                                                                |     |
| Fig. (74a):       | <sup>1</sup> H NMR spectrum of $β$ -sitosterol (CDCl <sub>3</sub> )                              | 201 |
| Fig. (74b):       | <sup>1</sup> H NMR spectrum of $β$ -sitosterol (CDCl <sub>3</sub> )                              | 202 |
| Compound 9        |                                                                                                  |     |
| Fig. (75):        | ESI-MS spectrum of vitexin                                                                       | 205 |
| Fig.(76a):        | <sup>1</sup> H NMR spectrum of vitexin (DMSO- <i>d</i> <sub>6</sub> )                            | 206 |
| Fig. (76b):       | <sup>1</sup> H NMR spectrum of vitexin (DMSO- <i>d</i> <sub>6</sub> )                            | 207 |
| <b>Fig.</b> (77): | <sup>13</sup> C NMR spectrum of vitexin (DMSO- <i>d</i> <sub>6</sub> )                           | 208 |
| Fig. (78):        | DEPT 135 spectrum of vitexin (DMSO-d <sub>6</sub> )                                              | 209 |
| Fig. (79):        | DEPT 90 spectrum of vitexin (DMSO-d <sub>6</sub> )                                               | 210 |
| Fig. (80):        | HPLC-DAD chromatograms of vitexin (A) and D. bicolor leaf aqueous                                |     |
|                   | methanolic extract (B)                                                                           | 211 |
| Fig. (81):        | Calibration curve of vitexin at concentrations 5-50 µg/ml                                        | 211 |
| Fig. (82).        | Compounds isolated from D. bicolor leaf extract                                                  | 213 |

| Fig. (83): | Gas chromatogram of the essential oil of D. bicolor flowers on DB-5  |     |
|------------|----------------------------------------------------------------------|-----|
|            | column                                                               | 216 |
| Fig. (84): | Gas chromatogram of the essential oil of D. bicolor leaves on DB-5   |     |
|            | column                                                               | 216 |
| Fig. (85): | Gas chromatogram of the essential oil of D. bicolor rhizomes on DB-5 |     |
|            | column                                                               | 217 |