Relationship Between Homocysteine, Coronary Risk Factors, C-Reactive Protein, Bone Mineral Density and Carotid Circulation Among frail elderly

Thesis

Submitted For Partial Fulfillment of MD degree in Geriatric Medicine

By

DEENA MOSTAFA MOHAMED HELMY ELMALEH

Under Supervision Of

PROFESSOR MOATASSEM SALAH AMER

Professor of Geriatrics & Internal MedicineFaculty of Medicine – Ain Shams University

PROFESSOR OMAR HUSSEIN OMAR

Professor of RadiologyFaculty of Medicine - Ain Shams University

PROFESSOR RANDA ABDEL WAHAB REDA MABROUK

Professor of Clinical pathologyFaculty of Medicine – Ain Shams University

DR. TAMER MOHAMED FARID

Assistant Professor of Geriatrics MedicineFaculty of Medicine-Ain Shams University

Dr. Ekrami Essa Abdelrhman

Lecturer of Geriatrics Medicine
Faculty of Medicine – Ain Shams University
Faculty of Medicine
Ain Shams University

2014

حراسة العلاقة بين الموموسيستايين وغوامل الخطورة لخيق الشرايين التاجية و بروتين سي التغاغلي و كثافة العظاء و الدورة الدموية بالشريان السباتي في المسنين المصابين بالومن

رسسالة

توطئة للحصول على درجة الدكتوراه في طب وصحة المسنين مقدمة من دينا مصطفى محمد حلمى المالح

تحت إشراف الأستاذ الدكتور/ معتصم صلاح عامر

أستاذ الأمراض الباطنية و طب المسنين كلية الطب - جامعة عين شمس

الأستاذة الدكتورة/رندة عبدالوهاب رضا مبروك

أستاذ الباثولوجيا الاكلينيكية كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ عمر حسين عمر

أستاذ الأشعة التشخيصية

كلية الطب - جامعة عين شمس

دكتور/تامر محمد فريد

أستاذ مساعد طب و صحة المسنين

كلية الطب - جامعة عين شمس

دكتور/اكرامي عيسى عبد الرحمن

مدرس طب و صحة المسنين كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2014

<u>List of abbreviation</u>

AD Alzheimer's disease
ADL Activities of dialy living
AHA American Heart Association

AICD anemia of inflammation or chronic disease

BMD bone mineral density **BP** Blood pressure

CES-D Center for Epidemiological Studies-Depression scale

CHD Coronary heart disease

CHS Cardiovascular Health Study
CIMT Carotid intema media thickness

CNS Central nervous systemCRP C-reactive proteinCVD Cardiovascular disease

DEXADual energy x-ray absorptiometry **DHEAS**dehydroepiandrosterone sulfate

DM Diabetes mellitus

GDS Geriatric depression scale

GH Growth hormone
HCY Homocystiene
HD Heart disease

HDL High density lipoprotein

IADL Instrumental activities of dialy living

IGF insulin-like growth factor

IL Interleukin

LDL low density lipoproteinMCI mild cognitive impairmentMI myocardial infarction

MMSE Mini-mental state examination

OA Osteoarthritis

PBMCS peripheral blood mononuclear cells

SAA Serum amyloid-A
SD Standard deviation
SES socio-economic status

SOF Study of Osteoporotic Fractures
SPSS Statistical Package for Social Science

TG Triglycerides

TNF tumor necrosis factor
WHI Woman Health Initiative
WHO World Health Organization

<u>List of tables</u>

Table no.	Table title	Page
Tab. 1	CRP as an Cardiovascular Risk Factor: Possible Explanations	28
Tab.2	Diagnostic categories for osteoporosis in postmenopausal women based on World Health Organization	36
Tab. 3	Distribution of demographic variables .	53
Tab. 4	Distribution of associated chronic diseases	54
Tab. 5	Comparison between the two studied groups as regards age	55
Tab. 6	Comparison between the two studied groups as regards gender	55
Tab. 7	Comparison between the two studied groups as regards living arrangement	55
Tab. 8	Comparison between the two studied groups as regards smoking habit	56
Tab. 9	Comparison between the two studied groups as regards education	56
Tab. 10	Comparison between the two studied groups as regards presence of chronic diseases	57
Tab. 11	Comparison between the two studied groups as regards the mean number of associated chronic diseases.	57

Tab. 12	Comparison between the two studied groups as regards ADL assessment	58
Tab. 13	Comparison between the two studied groups as regards IADL assessment.	58
Tab. 14	Comparison between the two studied groups as regards GDS score	58
Tab. 15	Comparison between the two studied groups as regards MMSE score	59
Tab. 16	Comparison between the two studied groups as regards bone mineral density(spinal)	59
Tab. 17	Comparison between the two studied groups as regards bone mineral density(femur)	59
Tab. 18	Comparison between the two studied groups as regards maximum Carotid intema media thickness.	60
Tab. 19	Comparison between the two studied groups as regards the mean lipid profile	60
Tab. 20	Comparison between the two studied groups as regards the mean C reactive protein and Homocysteine	61
Tab. 21	Sensitivity and specificity of different cut off points of serum CRP in detection of frailty	61
Tab. 22	Sensitivity and specificity of Homocystiene in detection of frailty	62

Tab. 23	Correlation coefficient between age, homocystiene, CRP of case and studied clinical parameters	64
Tab. 24	Correlation coefficient between age, homocystiene, CRP of case and other studied laboratory parameters	64
Tab.25	Correlation coefficient between age, homocystiene, CRP of case and studied diagnostic imaging parameters	65
Tab.26	Correlation coefficient between CIMT, Osteoprosis & number of chronic diseases.	65

<u>List of Figures</u>

Figure	Figure title	Page
no.		
Fig. 1	Cycle of frailty	9
Fig. 2	Physiology of frailty	12
Fig.3	Mechanistic link between frailty and cardiovascular disease	30
Fig. 4	Lunar DPX-MD+ densometer	46
Fig. 5	Evaluation of the near wall of the carotid	47-48
	intima media layer.	
Fig. 6	Area under the curve for serum CRP	62
Fig. 7	Area under the curve for serum HCY	63

ACKNOWLEDGMENT

First and foremost, I thank Allah, who gave me the strength to accomplish this work.

I would like to express my sincere gratitude to **Prof. Dr.**Motasem Salah Amer Professor of Geriatrics & Internal Medicine, Ain Shams University, for his great support and stimulating views. His meticulous supervision and continuous encouragement pushed me to produce good valuable work. This indeed is a debt I could not ignore, or forget.

Particular thanks to **Prof. Or. Omar Hussein Omar**, Professor of Radiology, Ain Shams University, for his help and valuable advice.

A special tribute and appreciation to **Prof. Dr. Randa Reda Abdel Wahab**, Professor of Clinical Pathology, Ain Shams University, for her care and advice.

I would also like to record my thanks to **Dr.Tamer Mohamed Farid**, Assistant professor of Geriatrics Medicine, Ain Shams University, for his scientific assistance in this thesis, active guidance and close supervision.

I am sincerely thankful to **Dr. Ekrami Essa Abdelrhman**, Lecturer of Geriatric Medicine, Faculty of Medicine, Ain Shams University, for his sincere and kind guidance, help and support.

Dedication

I would like to express my deepest appreciation and gratitude to my family who have been very supportive & helpful.

Contents

• Introduction	1
• Aim of the study	3
• Review of Literature:	
- Frailty	4
- Coronary risk factors & frailty	21
- Osteoporosis & frailty	34
Subjects and Methods	42
• Results	50
• Discussion	66
• Conclusion	75
Recommendations	77
• Summary	78
• References	81
• Appendix	99
Arabic Summary	

INTRODUCTION

Frailty is often conceptualized by health care providers as a state of late life decline and vulnerability characterized by weakness and decreased physiologic reserve. Frail older adults are less able to adapt to stressors such as acute illness or trauma. Their increased vulnerability leads to adverse outcomes including falls, institutionalization, disability, and death (*Fried et al; 2001*).

Most medical practitioners who care for older adults have noted a subset of patients who are clearly in a state of rapid decline, seemingly unrelated to a specific disease state. Other patients who are frail have more subtle signs and symptoms that can be easily overlooked. Old age, itself, does not define frailty. Some patients, despite advanced age, may experience temporary disability related to illness or trauma, but rebound after recovery and return to their baseline. Others may appear robust but tolerate medical stress poorly, and never regain full function following illness or hospitalization. Still others are noted to have gradual but unrelenting functional decline in the absence of apparent stress factors (*Walston et al*; 2010).

With aging, cardiovascular (CV) diseases become more frequent and complicated. They are usually not isolated, but are associated with other medical problems and they continue to be the most important cause of morbidity and mortality in the elderly. More than 15% of deaths in the world are due to CV diseases for both women and men >65 years of age (*Ozturk & Kutlu*, 2010).

With the emergence of evidence showing the prognostic value of frailty in elderly patients with CVD, ongoing efforts are being directed toward incorporating frailty into existing and novel risk prediction models. (*Afilalo 2011*).

Various authors have highlighted the frequent association between osteoporosis and frailty. Osteoporosis appears to be a good marker of frailty. It is a sign of vulnerability. Hip fracture is the major complication confronting elderly subjects and this too is a major public health problem. Frail subjects seem to be particularly exposed to this complication. (Crepaldi et al 2005)

It is important to understand the links between frailty, osteoporosis as the therapeutic approaches may be different or complementary. The efficacy, cost and adverse effects of a purely pharmacological approach aiming to increase BMD or of a multidisciplinary approach aimed at countering the factors associated with frailty may be very different in a frail or a robust aged population. (*Rolland et al 2008*)

AIM OF THE STUDY

To compare frail & healthy elderly regarding Bone mineral density, carotid circulation and serum levels of Homocysteine, coronary risk factors and CRP.

FRAILTY

Definitions of frailty

There is no single best definition of frailty; it does not fit easily with the typical organ specific model of disease. Frailty is theoretically defined as a clinically recognizable state of increased vulnerability, resulting from aging-associated decline in reserve and function across multiple physiologic systems such that the ability to cope with every day or acute stressors is compromised (*Xue*; 2011).

Several factors complicate the formulation of a definition for frailty. Older adults come from heterogeneous medical, environmental, educational, and psychological backgrounds, so that considerable variation is present in baseline status. Additionally, frailty exists on a spectrum, further increasing the complexity of defining the condition (*Hamerman*; 1999).

Fried et al defined frailty as: "A physiologic syndrome characterized by decreased reserve and resistance to stressors, resulting from cumulative decline across multiple physiologic systems, and causing vulnerability to adverse outcomes" (*Fried & Walston 2003*).