SOLUBLE RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS IN CHILDREN AND ADOLESCENTS WITH TYPE 1 DIABETES MELLITUS: POSSIBLE ASSOCIATION WITH DIABETIC VASCULAR COMPLICATIONS

Thesis

Submitted for partial fulfillment of the Master degree *in Pediatrics*

Presented By

Shadwa Abd Elhamid Mohamed M.B.B.Ch., Zagazig University (2004)

Supervised by

Prof. Dr. Eman Mounir Sherif

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Hanan Mohamed Issa

Professor of Radiology
Faculty of Medicine - Ain Shams University

Dr. Abeer Ahmed Abd Elmaksoud

Assistant professor of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2011 المستقبل الذائب للنواتج النهائية المتقدمة لعملية التسكر في الأطفال والمراهقين المصابين بمرض السكر من النوع الأول وإمكانية ارتباط ذلك بمضاعفات مرض السكر على الأوعية الدموية

رسالة

توطئة للحصول على درجة الماجستير فى طب الأطفال مقدمة من

الطبيبة الشدوى عبد الحميد محمد بكالوريوس الطب والجراحة كلية الطب جامعة الزقازيق 2004

تحت إشراف

أ.د/ إيمان منير شريف أستاذ طب الأطفال كلية الطب- جامعة عين شمس

أ.د/ حنان محمد عيسى أستاذ الأشعة التشخيصية كلية الطب- جامعة عين شمس

د/ عبير أحمد عبد المقصود أستاذ مساعد طب الأطفال كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس 2011

List of Contents

Title	Page
List of Abbreviations	
List of Tables	VI
List of Figures	X
Introduction	1
Aim of the Work	4
Review of Literature	
Chapter (1): Diabetes Mellitus	5
Chapter (2): Macrovascular complications of	48
diabetes	40
Patients and Methods	
Results	99
Discussion	136
Summary	158
Conclusion	163
Recommendations	164
References	
Arabic Summary	

ACE	Angiotensin converting enzyme
ACEI	Angiotensin converting enzyme inhibitor
ADA	American Diabetes Association
ADAM10	A disintegrin and metalloprotinase10
AER	Albumin excretion rate
AGEs	Avanced glycation end prouducts
APCs	Antigen presenting cells
ApoA-IV	Apolipoprotein A-IV
APS 1	Autoimmune polyendocrine syndrome type 1
ARB	Angiotensin receptor blockers
BG	Blood glucose
BMI	Body Mass Index
CAC	Coronary artery calcification
CAD	Coronary artery disease
cat	Category
CCA	Common carotid artery
CD	Cluster of differentiation
Cdc42	Cell division cycle 42 protein
CHD	Coronary heart disease
cIMT	Carotid intima-media thickness
CML	N-Carboxymethyllysine

CV	Cardiovascular
CVD	Cardiovascular disease
DBP	Diastolic Blood Pressure
DCCT	Diabetes Control and Complication Trial
DKA	Diabetic ketoacidosis
DNA	Deoxyribonucleic acid
DPT-1	Diabetes Prevention Trial-1
ECs	Endothelial cells
EDIC	Epidemiology of Diabetes Intervention and
	Complication
ELISA	Enzyme-linked immunosorbent assay
eNOS	Endothelial nitric oxide synthase
esRAGE	Endogenous secretory receptor for advanced glycation end products
ESRD	End stage renal disease
FFA	Free fatty acids
FMD	Flow mediated dilatation
GAD	Glutamic acid decarboxylase
HbA1c	Glycated hemoglobin
HDL	High density lipoproteins
HDL- C	High density lipoprotein-cholesterol
HHS	Hyperglycemic hyperosmolar state
HLA	Human leukocyte antigen
HMGB 1	High mobility group box 1

HNF	Hepatocyte nuclear factor
HPLC	High purified liquid chromatography
HRP	Horseradish peroxidase
IA-2	Islet antigen 2
IAA	Insulin autoantibodies
ICA	Islet cell antibody
ICA	Internal carotid artery
ICAM-1	Intercellular adhesion molecule-1
IDDM	Insulin dependent diabetes mellitus
IFN-γ	Interferon- gamma
IL	Interleukin
IMT	Intima-media thickness
INGAP	Islet neogenesis associated proteins
IPF	Insulin promoter factor
IQR	Inter-quartile range
IRMA	Intra-retinal microvascular abnormalities
ISPAD	International Society of Pediatric and Adolescents Diabetes
KCNJ II	Potassium inwardly-rectifying channel, subfamily
	J, member II
LDL	Low density lipoproteins
LDL-C	Low density lipoprotein cholesterol
Leu7Pro	Leucine to praline polymorphism
MAC-1	Macrophage-1 glycoprotein (cD11B/CD18)

MAP	Mitogen-activated protein
MHC	Major histocompatibility complex
MHz	Mega Hertez
MI	Myocardial infarction
MMP	Matrix metalloproteinase
MODY	Maturity onset diabetes of the young
mRNA	Messenger ribonucleic acid
N	Numbers
NAD	Nicotinamide adenine dinucleotide
NADPH	Nicotine amine dinucleotide phosphate
NF-KB	Nuclear factor kappa B
NGSP	National Geographic School Publishing
NMR	Nuclear magnetic resonance
NO	Nitric oxide
PAI-1	Plasminogen activator inhibitor type 1
RAGE	Receptor for advanced glycation end prouducts
RAS	Rennin-angiotensin system
Reg3	Regenerating islet-derived 3
ROC	Receiver operator characteristic
ROS	Reactive oxygen species
S100	S100-Calcium binding protein
SBP	Systolic Blood Pressure
SD	Standard deviation

SMBG	Self-monitoring of blood glucose
SPSS	Statistical package for social sciences
sRAGE	Soluble Receptor for advanced glycation end products
T1DM	Type1diabetes mellitus
T2DM	Type 2 diabetes mellitus
TG	Triglycerids
TGF-B	Transforming growth factor-B
TH	T helper
TMB	Tetra methyl benzidine
TNF-α	Tumor necrosis factor alpha
UAE	Urinary albumin excretion
VEGF	Vascular endothelial growth factor
VLDL	Very low density lipoproteins
WHO	World Health Organization
wk	Week
yrs	Years

List of Tables

Table	Title	Page
Table (1)	Aetiological classification of DM	6
Table (2)	Criteria for the diagnosis of DM	7
Table (3)	Categories of increased risk for diabetes (prediabetes)	7
Table (4)	The relation between HLA-DR allele and the risk of developing diabetes	12
Table (5)	Hypoglycemic symptoms	23
Table (6)	Diagnostic Criteria for Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State	25
Table (7)	Classification of diabetic neuropathy	31
Table (8)	Comparison between different types of insulin	33
Table (9)	Plasma blood glucose and A1C goals for type I diabetes by age-group.	61
Table (10)	Demographic characteristics of patient and control groups	99
Table (11)	Diabetic history of patients group	99
Table (12)	Diabetic complications of patients group	100
Table (13)	Laboratory findings of patient and control groups	100
Table (14)	Vascular findings of patient and control groups	101

Table	Title	Page
Table (15)	Comparison between patient and control groups as regards demographic characteristics	106
Table (16)	Comparison between patient and control groups as regards anthropometric measurements	107
Table (17)	Comparison between patient and control groups as regards pulse and blood pressure measurements	108
Table (18)	Comparison between patient and control groups as regards mean cIMT (mm)	108
Table (19)	Comparison between patient and control groups as regards laboratory findings	109
Table (20)	Comparison between males and females as regards cIMT	111
Table (21)	Comparison between group I and group II of patients as regards demographic characteristics	112
Table (22)	Comparison between group I and group II as regards anthropometric measurements	113
Table (23)	Comparison between group I and group II patients as regards pulse and blood pressure measurements	114
Table (24)	Comparison between group I and group II as regards diabetic history	115
Table (25)	Comparison between group I and group II as regards diabetic complications	116

Table	Title	Page
Table (26)	Comparison between group I and group II as regards vascular findings	116
Table (27)	Comparison between group I and group II as regards laboratory findings	119
Table (28)	Comparison between patients with and without retinopathy, nephropathy and neuropathy as regards cIMT and sRAGE	120
Table (29)	ROC curve data as regard sRAGE and mean cIMT to differentiate between patients and controls	122
Table (30)	Correlation between sRAGE and anthropometric measurement in patient and control groups	123
Table (31)	Correlation between sRAGE and pulse and blood pressure measurements in patient and control groups	124
Table (32)	Correlation between sRAGE and diabetic parameters in patient group	125
Table (33)	Correlation between sRAGE and mean cIMT in patient and control groups	126
Table (34)	Correlation between sRAGE and laboratory findings in patient and control groups	127
Table (35)	Correlation between mean cIMT and anthropometric measurements in patient and control groups	128
Table (36)	Correlation between mean cIMT and pulse and blood pressure measurements in patient and control groups	130

≥ List of Tables

Table	Title	Page
Table (37)	Correlation between mean cIMT and	131
	diabetic parameters in patient group	131
	Correlation between mean cIMT and	
Table (38)	laboratory findings in patient and control	133
	groups	

List of Figures

Fig. No.	Title	Page No.
Fig (1)	The pathogenesis of islet cell destruction.	15
	Hypothetical stages and loss of beta cells	
Fig (2)	in an individual progressing to type 1A	18
	diabetes	
Fig (3)	Diabetic background retinopathy	29
Fig (4)	Syringe and needle	35
Fig (5)	Disposable insulin pen	35
Fig (6)	Refillable insulin pen	35
Fig (7)	Disposable insulin device with large dial	35
Fig (8)	Insulin pump	35
Fig (9)	Insulin pump attached to its user with an	36
Fig (2)	infusion set	30
Fig (10)	Islet cell transplantation	39
Fig (11)	The Bio-artificial pancreas	41
Fig (12)	Gene therapy using an adenovirus vector	42
Fig (13)	Adipose tissue and inflammation in the	55
1 1g (1 <i>0)</i>	macrovascular complications	
Fig (14)	Factors contributing to a prothrombotic	57
1'1g (14)	state in diabetes	
Fig (15)	Hyperglycemia increases oxidative stress	59
Fig (16)	Oxidative Stress pathways	59
Fig (17)	Various forms of receptor for advanced	66

Fig. No.	Title	Page No.
	glycation end-products (RAGE)	
	Positive feedback loop whereby cell-	
Fig (18)	surface RAGE is upregulated via the	70
	presence of its ligands	
Fig (19)	The biology of RAGE	70
Fig (20)	Advanced glycosylation end products and	73
Fig (40)	the mechanism of vascular injury	/3
Fig (21)	Effects of AGEs in diabetes.	74
Eig (22)	Mechanisms by which RAGE induces	76
Fig (22)	glomerular stress	/0
	B-mode imaging of the common carotid	
Fig (23)	artery (CCA) of a 17-year-old patient with	83
	diabetes mellitus type I	
Fig (24a)	Longitudinal scan through the left	102
Fig (24a)	common carotid artery	102
	Longitudinal scan through the right CCA	
Fig (24b)	revealed the presence of a localized soft	103
	atheroma in relation to the superficial wall	
Fig (24e)	Soft atheroma causing more than 50%	103
Fig (24c)	stenosis at the CCA lumen	103
	Two opposing (Kissing) segmental areas	
Fig (25a)	of intimal thickening or soft non calcific	104
	atheroma	
Fig (25b)	Spectral analysis of the carotid flow at the	105

Fig. No.	Title	Page No.
	site of turbulence	
Fig (25c)	Spectral analysis of the carotid flow at the prestenotic area	105
Fig (26)	Comparison between patient and control groups as regards tanner stage	106
Fig (27)	Comparison between patient and control groups as regards BMI percentile	107
Fig (28)	Comparison between patient and control groups as regards mean cIMT (mm).	108
Fig (29)	Comparison between patient and control groups as regards lipid profile	109
Fig (30)	Comparison between patient and control groups as regards sRAGE	110
Fig (31)	Comparison between males and females as regards cIMT.	111
Fig (32)	Comparison between group I and group II as regards Height percentile	113
Fig (33)	Comparison between group I and group II as regards Duration of DM	115
Fig (34)	Segmental regional intimal thickening of the right CCA.	117
Fig (35)	A sizable ill defined soft tissue atheroma filling the lumen of the left CCA	118
Fig (36)	Comparison between group I and group II	119