Study of Neutrophil gelatinase-associated Lipocalin in non septic patients with risk of Acute Kidney Injury in ICU.

Thesis

Submitted for partial fulfillment of

Master Degree in Internal Medicine

By

Islam Sobhy Abd El Fattah

M.B.B.Ch-Kasr El Ainy University

Under supervision of

Prof. Dr. Magdy Mohamed El Sharkawy

Professor of Internal Medicine and Nephrology

Faculty of medicine-Ain Shams University

Assistant Prof. Dr. Sahar Mahmoud Shawky

Assistant Professor of Internal Medicine and Nephrology

Faculty of medicine-Ain Shams University

Dr. Abd El Rahman Nabil Khedr

Lecturer of Internal Medicine and Nephrology

Faculty of medicine-Ain Shams University

Faculty of Medicine

Ain Shams University

بسم الله الرحمن الرحيم

وَلَقَدْ خَلَقْنَا الْإِنسَانَ مِن سُلَالَةٍ مِّن طِينٍ {١٢} ثُمَّ جَعَلْنَاهُ لَخُهُ جَعَلْنَاهُ لَا الْمُطْفَةُ فِي قَرَارٍ مَّكِينٍ {١٣} ثُمَّ لَخْةً فَخَلَقْنَا لَلْمُطْفَةً مُضْغَةً فَخَلَقْنَا الْعَلَقَةَ مُضْغَةً فَخَلَقْنَا الْمُطْغَةَ لَمَظْفَةً لَمَا ثُمَّ أَنشَأْذَاهُ خَلْقًا آخرَ اللَّهُ الْحَطَامِ لَحْمًا ثُمَّ أَنشَأْذَاهُ خَلْقًا آخرَ اللَّهُ أَحْسَنُ الْخَالِقِينَ {١٤} فَتَرَارَكَ اللَّهُ أَحْسَنُ الْخَالِقِينَ {١٤}

حدق الله العظيم

سورة المؤمنون (١٢ – ١٤)

Acknowledgement

First, I would like to thank **God** for his care, blessing and mercy that I really appreciate.

I wish to express my sincere indebtedness and eternal loyalty to **Prof. Dr. Magdy Mohamed El Sharkawy**

Professor of Internal medicine and Nephrology, Faculty of Medicine, Ain Shams University, for her consistent help, advice, cooperation, creative ideas, guidance and meticulous supervision.

I would like to express my deepest gratitude to Assistant Prof.

Or.Sahar Mahmoud Shawky

Assistant Professor of Internal medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his continuous support, and inspiring guidance over the period of my work.

ᢌᡳᡱᢝᢌᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝᢝ

Furtherly, I would like to offer my deep gratitude to **Dr. Abd El Rahman Nabil Khedr** Lecturer of Internal Medicine and Nephrology

Faculty of medicine-Ain Shams University for her valuable guidance, and support.

Thanks to all my patients who without their participation this work would not be accomplished.

Finally, I dedicate this work to all my family who supported and encouraged me a lot.

List of Contents

Title	Page	
Introduction1		
Aim of work3		
Review of Literature:		
o Chapter 1:acute kidney injury	4	
o Chapter 2: Markers of Acute Kidney Injury	26	
Patients and methods40		
Results	45	
Discussion	58	
Summary67		
Conclusion	69	
References70		
Arabic Summary83		

List of Figures

Figure no.	Name of Figure	Page
1	Iron thievery (Sequestration)	30
2	NGAL as a predictor of AKI	55
3	NGAL as a predictor for the need of inpatient	
	hemodialysis	56
4	NGAL as a predictor of inpatient mortality	57

List of Tables

Table no.	Name of Figure	Page
1	RIFLE or AKIN criteria	8
2	Conditions causing prerenal azotemia	10
3	Conditions causing postrenalazotemi	11
4	Conditions that cause parenchymal (intrinsic) AKI	12
5	Scoring system of AKI severity based on number of granular	
	casts and RTE cells in urinary sediment	16
6	Urine findings in prerenal azotemia and intrinsic AKI	17
7	The Sequential Organ Failure Assessment (SOFA) Respiratory	
	system	41
8	The Sequential Organ Failure Assessment (SOFA) Nervous	
	system	41
9	The Sequential Organ Failure Assessment (SOFA)	
	cardiovascular system	42
10	The Sequential Organ Failure Assessment (SOFA) liver	42
11	The Sequential Organ Failure Assessment (SOFA) blood	43
12	Distribution of the studied group as regard age	45
13	Distribution of the studied group as regard sex	46
14	Distribution of the studied group as regard special habits	46
15	Distribution of the studied group as regard past history	47
16	Distribution of the studied group as regard risk of AKI	48
17	Distribution of the studied group as regard Laboratory data:	49
18	Descriptive Analysis of AKI related laboratory and clinical	
	assessment indices	50
19	Performance on Serum NGAL as a marker of AKI at time of	
	admission and after development of AKI	51

20	NGAL Correlations with laboratory data	52
21	NGAL Correlations with smoking	53
22	NGAL Correlations with gender	53
23	NGAL Correlations with AKIN	54
25	NGAL Correlations with patient's outcome	54

List Of Abbreviations	
ACEI	Angiotensinogen Converting Enzyme Inhibitor
ADQY	Acute dialysis quality initiative
AKI	Acute kidney injury
AKIN	Acute kidney injury network
ARB	Angiotensin II Receptor Blocker
ARF	Acute renal failure
ATN	Acute tubular necrosis
ATP	Adenosine triphosphate
AUC	Area under curve
BNP	Brain natriuretic peptide
BUN	Blood urea nitrogen
CI	Confidence interval
CIN	Contrast induced nephropathy
CKD	Chronic kidney disease
CNI	Calcineurin inhibitor
СО	Cardiac output
CRP	C reactive protein
DM	Diabetes mellitus
DNA	Deoxyribonucleic acid
DOP	dopamine
dop	doputamine
eGFR	Estimated glomerular filtration rate
ері	epinephrine
ESKD	End stage kidney disease
FENa	Fractional excretion of sodium
GFR	glomerular filtration rate
HELLP	Haemolysis, elevated liver enzymes and low platelets

HPF	High power field
HTN	Hypertension
ICU	Intensive care unite
IgA	Immunoglobulin A
IL-18	Interleukin 18
INOS	Inducible nitric oxide sensetase
К	potassium
KDIGO	Kidney disease improving global outcome
KG	Kilogram
KIM	Kidney injury molecule
LPF	Low power field
LPS	Lipopolysaccharides
M MOL/	Millimole/liter
MAP	Mean arterial blood pressure
ML	Milliliter
ML/min	Milliliter/minute
МО	Milliosmol
mRNA	Messenengerribonucleic acid
Na	Sodium
NCEPOD	National confidential enquiry into patient outcome and death
NGAL	Neutrophil gelatinae associated lipocalin
NICE	National institute for health and critical excellence
NIISS	Neonatal therapeutic intervention scoring system
NO	Nitric oxide
NSAID	Non steroid anti-inflammatory drug
p-NGAL	Plasma neutrophil gelatinae associated lipocalin
RBF	Renal blood flow
ROC	Receiver Operating Characteristic

ROS	Reactive oxygen species
RTE	Renal Tubular Epithelium
RVR	Renal vascular resistance
SAF	Saline versus albumin fluid evaluation
sCr	Serum creatinine
SD	Standard deviation
SIRS	Systemic inflammatory response syndrome
SLE	Systemic Lupus Erythematosis
SLED	Sustained low efficiency dialysis
SOFA	Sequential organ failure Assesment
TLRS	Tall likereceptors
TNF	Tumor necrosis factor
UF	Urine flow
UNa	Urine sodium
u-NGAL	Urinary neutrophil gelatinae associated lipocalin

Introduction

Acute kidney injury (AKI) represents a major clinical problem, with rising incidence and high mortality rate despite significant advances in medical care. It affects some 3-7% of patients admitted to the hospital and approximately 25-30% of patients in the intensive care unit (**Brenner and Rector., 2007**).

This apparent lack of improvement may result from the use of more aggressive medical and surgical interventions in an ever-ageing population (Kolhe et al., 2008).

On the other hand, potentially effective therapeutic interventions for AKI may currently fail because they are applied late in the course of injury after an obvious increase of serum creatinine (sCr) is observed (Johanna et al., 2007).

Due to the delayed rise in sCr following injury, recent efforts have focused on identification of an early and reliable promising novel biomarker of kidney injury with potentially high sensitivity and specificity (**Bouman et al., 2010**).

Neutrophil gelatinase-associated lipocalin (NGAL) is a novel renal biomarker showing promising results in prediction of AKI in patients across different clinical settings (Nagi et al., 2011).

NGAL measured at ICU admission predicts the development of severe AKI similarly to serum creatinine-derived eGFR. However, NGAL adds significant accuracy to this prediction in combination with eGFR alone or with other clinical parameters and has an interesting predictive value in patients with normal serum creatinine (**De Geus et al., 2011**).

Aim of the work

To identify the frequency of elevated serum NGAL in non septicpatients with risk of AKI in the ICU setting and its relation to AKI development & patients outcome (mortality and morbidity).

CHAPTER (1) Acute kidney injury

Introduction

Acute kidney injury (AKI) has now replaced the term acute renal failure and a universal definition and staging system has been proposed to allow earlier detection and management of AKI. The new terminology enables health care professionals to consider the disease as a spectrum of injury. This spectrum extends from less severe forms of injury to more advanced injury when acute kidney failure may require renal replacement therapy (RRT) (Lewingtonand Kanagasundaram ., 2011).

Clinically AKI is characterized by a rapid reduction in kidney function resulting in a failure to maintain fluid, electrolyte and acid-base homoeostasis. There have previously been many different definitions of AKI used in the literature which has made it difficult to determine the epidemiology and outcomes of AKI. Over recent years there has been increasing recognition that relatively small rises in serum creatinine in a variety of clinical settings are associated with worse outcomes (**Praught and Shlipack.**, 2005).

To address the lack of a universal definition for AKI a collaborative network of international experts representing nephrology and intensive care societies established the Acute Dialysis Quality Initiative (ADQI) and devised the RIFLE definition and staging system for AKI, Shortly after this many of the original members of the ADQI group collaborated to form the Acute Kidney Injury Network (AKIN) (Mehta et al., 2007).

The AKIN group modified the RIFLE staging system to reflect the clinical significance of relatively small rises in serum creatinine. Most recently the international guideline group, Kidney Disease Improving Global Outcomes (KDIGO) has brought together international experts from many different specialties to produce a definition and staging system that harmonises the previous definitions and staging systems proposed by both ADQI and AKIN (Lewington and Kanagasundaram ., 2011).

It is anticipated that this definition and staging system will be adopted globally. This will enable future comparisons of the incidence, outcomes and efficacy of therapeutic interventions for AKI.

To date there is a paucity of data on the incidence of AKI whether community or hospital-acquired. The reported prevalence of AKI from US data ranges from 1% (community-acquired) up to 7.1% (hospital-acquired) of all hospital admissions (Nash et al., 2002).