

Oscillation Criteria of Functional Nonlinear Dynamic Equations

Submitted for the Degree of Doctor of Philosophy of Science in Mathematics

Presented by **Belal Abd Elmagid Ali Glalah**

Supervisors

Prof. Dr. Entisarat El-Shobaky

Professor of Pure Mathematics, Math. Dept., Faculty of Science, Ain Shams University

Prof. Dr. Elmetwally Elabbasy

Professor of Pure Mathematics, Math. Dept., Faculty of Science, Mansoura University

Dr. Taher S. Hassan

Assistant Professor of Pure Mathematics, Math. Dept., Faculty of Science, Mansoura University

> Department of Mathematics Faculty of Science Ain Shams University

Acknowledgements

Acknowledgment

The author wishes to express his thanks and sincere gratitude to **Prof. Dr. Entisarat El-Shobaky**, Professor of Math., Faculty of Science - Ain Shams University, I would like to express my sincere thanks for her great help, support, good great efforts, and continuous encouragement.

Also, I am greatly and deeply indebted to **Prof. Dr. Elmetwally Elabbasy**, Professor of pure mathematics, faculty of science, Mansoura University for suggesting the point of research, continuous supervision, and for the excellent facilities he always offered during the fulfillment of the present thesis..

I am deeply grateful to **Dr. Taher S. Hassan**, assistant professor of pure mathematics faculty of science, Mansoura University, for suggesting the point of research, his great efforts and valuable helps, valuable discussion in performing this work and continuous encouragement and support through the processing of the present thesis.

Finally, I like to thank everyone who has extended his hand with any help during the preparation of this thesis.

Contents

CONTENTS

	· · · · · · · · · · · · · · · · · · ·	Jage
Summa	ry	i
Chapter	1: Preliminary Results for Oscillation of the	
	Dynamic Equations	1
1.1	Introduction	1
1.2	Time Scales Calculus	3
1.3	Exponential functions	22
1.4	Interval Criteria for Forced Oscillation of Differential	
	Equations	32
1.5	Oscillation Criteria for Second Order Dynamic	
	Equations	34
1.6	Oscillation Criteria for Third Order Dynamic	
	Equations	36
1.7	Oscillation criteria for third order neutral dynamic	
	Equations	39
Chapter	2: Interval criteria for forced oscillation of	
	functional differential equations with γ-	
	Laplacian, damping and mixed nonlinearities	42
2.1	Introduction	42
2.2	Lemmas	43
2.3	Oscillation Criteria for Eq.	
	$(r(t)\phi_{\gamma}(x'(t)))' + p(t)\phi_{\gamma}(x'(t)) + q_0(t)\phi_{\beta}(x(t)) +$	
	$\int_a^b q(t,s)\phi_{\alpha(s)}(x(t))d\zeta(s) = e(t) \dots \dots \dots \dots \dots$	45

2.4	Oscillation Criteria for Eq.	
	$ (r(t)\phi_{\gamma}(x'(t)))' + p(t)\phi_{\gamma}(x'(t)) + q_0(t)\phi_{\beta}(x(t)) + $ $ \int_a^b q(t,s)\phi_{\alpha(s)}(x(g(t,s)))d\zeta(s) = e(t) \dots \dots$	55
Chapter	3: Oscillation criteria for functional nonlinear dynamic equations with γ -Laplacian, Damping and nonlinearities given by Riemann-Stieltjes integrals	61
3.1	Introduction	61
3.2	Oscillation criteria for Eq.	
	$\left(a(t)\phi_{\gamma}(x^{\Delta}(t))\right)^{\Delta}+p(t)\phi_{\gamma}\left(x^{\Delta\sigma}(t)\right)+$	
	$q_0(t)\phi_{\gamma}\big(x(g_0(t)\big) +$	
	$\sum_{i=1}^{2} \int_{a_i}^{b_i} q_i(t,s) \phi_{\alpha_i(s)} \left(x \left(g_i(t,s) \right) \right) \Delta \zeta_i(s) = 0 \dots \dots \dots$	63
Chapter	4: Oscillation criteria for third order nonlinear	
	dynamic equations	92
4.1	Introduction	92
4.2	Oscillation criteria for Eq.	
4.3	$ \left\{ r_2(t)\phi_{\alpha_2} \left(\left[r_1(t)\phi_{\alpha_1}(x^{\Delta}(t)) \right]^{\Delta} \right) \right\}^{\Delta} + q(t)\phi_{\beta}(x(g(t))) = 0 \dots \dots$	94
	$\left\{r_2(t)\phi_{\alpha_2}\left(\left[r_1(t)\phi_{\alpha_1}\left((x(t)+p(t)x(\tau(t))\right)^{\Delta}\right)\right]^{\Delta}\right)\right\}^{\Delta}$	

4.4 Oscillation criteria for Eq.

$\left\{r_2(t)\phi_{\alpha_2}\left(\left[r_1(t)\phi_{\alpha_1}\left((x(t)-p(t)x(\tau(t))\right)^{\Delta}\right)\right]^{\Delta}\right)\right\}^{\Delta}$	
$+ q(t)\phi_{\beta}(x(g(t))) = 0 \dots \dots \dots \dots$	149
References	168

Arabic Summary

Summary

Summary

It is well known that, the differential equations fined a wide range of applications in biology, physics, social, engineering and other areas. The fundamental problem in the theory of differential equations is to deduce the qualitative properties of the solutions of a given equation from the analytic form of the equation because the nonintegrability of the equation makes the problem of obtaining solutions of differential equations in terms of the elementary functions of analysis not solvable for most equations. The oscillation theory of differential equations as a part of qualitative properties are very important for applications.

In the recent years, there has been increasing interest in obtaining sufficient conditions for the oscillation and nonoscillation of various equations on time-scales. So, it is the focus of our study.

The thesis consists of four chapters:

In Chapter 1, we state some basic definitions and theorems that will be used throughout the next chapters. Also, we introduce the time scales calculus. Finally, we mention some of the related results with our work.

In Chapter 2, we are concerned with the oscillatory behavior of forced second order functional differential equations with γ -Laplacian, damping and mixed nonlinearities on the form of

$$\left(r(t)\phi_{\gamma}(x'(t)) \right)' + p(t)\phi_{\gamma}(x'(t)) + q_0(t)\phi_{\beta}(x(t))$$

$$+ \int_a^b q(t,s)\phi_{\alpha(s)} \left(x(g(t,s)) \right) d\zeta(s) = e(t)$$

where $\phi_{\alpha}(u) := |u|^{\alpha} \operatorname{sgn} u$, $\gamma, \beta \in [0, \infty), -\infty < a < b \le \infty$, $\alpha \in C[a, b)$ is strictly increasing such that $0 \le \alpha(a) < \mu < \alpha(b-)$ with $\beta > \gamma > \mu > 0$; $r, p, q_0, e \in C([t_0, \infty), \mathbb{R})$ with r(t) > 0 on $[t_0, \infty)$; $q \in C([0, \infty) \times [a, b))$; and $\zeta : [a, b) \to \mathbb{R}$ is nondecreasing. The function $g \in C([0, \infty) \times [a, b), [0, \infty))$ is such that $\lim_{t \to \infty} g(t, s) = \infty$, for $s \in [a, b)$. Our interest is to establish oscillation criteria for above equation without assuming that p(t), $q_0(t)$, q(t, s), and e(t) are definition of sign. Also, illustrative example of our results is presented.

Our Results in this Chapter have been published in Serdica Math. J. 40, (2014), 55-76.

In Chapter 3, we are concerned with the oscillatory behavior of the second order nonlinear functional dynamic equation with γ -Laplacian, damping and nonlinearities given by Riemann-Stieltjes integrals

$$\begin{split} \Big(a(t)\phi_{\gamma}(x^{\Delta}(t))\Big)^{\Delta} + p(t)\phi_{\gamma}\Big(x^{\Delta\sigma}(t)\Big) + q_{0}(t)\phi_{\gamma}\Big(x(g_{0}(t))\Big) \\ + \sum_{i=1}^{2} \int_{a_{i}}^{b_{i}} q_{i}(t,s)\phi_{\alpha_{i}(s)}\Big(x\Big(g_{i}(t,s)\Big)\Big) \Delta\zeta_{i}(s) = 0, \end{split}$$

on a time scale \mathbb{T} which is unbounded above, where $\phi_{\gamma}(u) := |u|^{\gamma-1}u$, $\gamma > 0$ and for i = 1, 2, $\alpha_i \in C(\hat{\mathbb{T}}, \mathbb{R})$ is strictly increasing with $-\infty < a_i < b_i < \infty$ and $\hat{\mathbb{T}}$ is a time scale; and $\zeta_i \in C(\hat{\mathbb{T}}, \mathbb{R})$ is nondecreasing; a and p are positive rd-continuous functions on \mathbb{T} ; q_0 and q_i , i = 1, 2, are nonnegative rd-continuous functions on \mathbb{T} and $\mathbb{T} \times \hat{\mathbb{T}}$ with $q_0, q_i \neq 0$; the functions $g_0 : \mathbb{T} \to \mathbb{T}$ and $g_i : \mathbb{T} \times \hat{\mathbb{T}} \to \mathbb{T}$ are rd-continuous functions

such that $\lim_{t\to\infty} g_0(t) = \infty$ and $\lim_{t\to\infty} g_i(t,s) = \infty$ for $s \in \hat{\mathbb{T}}$. Both of the two cases

$$\int_{t_0}^{\infty} a^{-\frac{1}{\gamma}}(t) \Delta t = \infty \quad \text{and} \quad \int_{t_0}^{\infty} a^{-\frac{1}{\gamma}}(t) \Delta t < \infty, \text{ are considered.}$$

The obtained results in this Chapter have been published in Mediterr. J. Math., 13, (2016), 981-1003.

In Chapter 4, we are concerned with the oscillation of solutions of third order nonlinear functional neutral dynamic equation of the form

$$\left\{r_2(t)\phi_{\alpha_2}\left(\left[r_1(t)\phi_{\alpha_1}(z^{\Delta}(t))\right]^{\Delta}\right)\right\}^{\Delta}+q(t)\phi_{\beta}(x(g(t)))=0,$$

on an above-unbounded time scale \mathbb{T} , where $\mathbb{Z}(t) := \mathbb{X}(t) \pm p(t)\mathbb{X}(\tau(t))$; $\phi_{\alpha}(s) := |s|^{\alpha-1}s$, $\alpha_1, \alpha_2, \beta > 0$; p, q, r_i , i = 1, 2, are positive rd – continuous functions on \mathbb{T} with $q(t) \neq 0$ such that $0 \leq p(t) \leq \overline{p} < 1$.

Our results extended and improve some known results for oscillation of third order nonlinear functional neutral dynamic equation. Some our results are illustrated by examples.

Chapter 1

Chapter 1

Preliminary Results for Oscillation of the Dynamic Equations

1.1 Introduction

It is well known that the differential equations fined a wide range of applications in biology, physics, social, engineering and other areas. The fundamental problem in the theory of differential equations is to deduce the qualitative properties of the solutions of a given equation from the analytic form of the equation because the nonintegrability of the equation makes the problem of obtaining solutions of differential equations in terms of the elementary functions of analysis not solvable for most equations. The oscillation theory of differential equations as a part of qualitative properties are very important for applications. For the basic theory of these equations, we refer the reader to the books by K. Gopalsamy [31], I. Györi and G. Ladas [34], Hale and Verduyn Lunel [41] and Kuang [51]. The oscillation theory for delay differential equations has been studied by many authors. An account of these results can be found in [7], [18], [32] and reference there in. The study of dynamic

equations on time scales, which goes back to its founder Stefan Hilger (1988) [42], is an area of mathematics that has recently received a lot of attention. It has been created in order to unify the study of differential and difference equations. Many results concerning differential equations carry over quite easily to corresponding results for difference equations, while other results seem to be completely different from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice—once for differential equations and once again for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which may be an arbitrary closed subset of the real. The most three popular examples of calculus on time scales are differential calculus, difference calculus, and quantum calculus. Dynamic equations on a time scale have enormous potential for applications such as in population dynamics. For example, it can model insect populations that are continuous while in season, die out in say winter, while their eggs are incubating or dormant, and then hatch in a new season, giving rise to a nonoverlapping population. Several authors have expounded on various aspects of this new theory, see the survey paper by Agarwal, Bohner, O'Regan, and Peterson [1] and the references cited therein. A book on the subject of time scale, i.e., measure chain, by Bohner and Peterson [8] summarizes and organizes much of time scale calculus. For advances of dynamic equations on time scales we refer the reader to the book [9]. In the recent years, there has been increasing interest in obtaining sufficient conditions for the oscillation and nonoscillation of various equations on time-scales; we refer the reader to the papers [2] and [79].

This Chapter is organized to seven sections as follows: after this introduction, in section 2. Time Scales Calculus. In section 3, Exponential functions. In section 4, Interval Criteria for Forced Oscillation of Differential Equations. In section 5, Oscillation Criteria for Second Order Dynamic Equations. In section 6, Oscillation Criteria for Third Order Dynamic Equations. Finally, in section 7, Oscillation criteria

for third order neutral dynamic equations.

1.2 Time Scales Calculus

In this section, we state some basic definitions and theorems that will be used throughout the next chapters.

Definition 1.2.1 A time scale is an arbitrary nonempty closed subset of the real numbers \mathbb{R} .

Thus

$$\mathbb{R}$$
, \mathbb{Z} , \mathbb{N} , \mathbb{N}_0 ,

i.e., the real numbers, the integers, the natural numbers and the nonnegative integers are examples of time scales, as are

$$[0,1] \cup [2,3]$$
, $[0,1] \cup \mathbb{N}$, and the Cantor set.

while

$$\mathbb{Q}$$
, \mathbb{R}/\mathbb{Q} , \mathbb{C} , $(0,1)$,

i.e., the rational numbers, the irrational numbers, the complex numbers, and the open interval between 0 and 1 are not time scales. Throughout this thesis, a time scales is denoted by the symbol T and has the topology that it inherits from the real numbers with the standard topology.

Definition 1.2.2 For $t \in \mathbb{T}$, the forward operator $\sigma : \mathbb{T} \to \mathbb{T}$ is defined by

$$\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}.$$