

Echocardiographic Study in Infants of Diabetic Mothers and Macrosomic Infants of Non Diabetic Mothers

Thesis

Submitted for fulfillment of Ph.D in Childhood Studies (Department of Medical Studies-Child Health and Nutrition)

 $\mathcal{B}_{\mathcal{I}}$

Reham Shaker Abd Elhameed El Gobashi

M.B.Bch, M.Sc. in Pediatrics- Cairo University

Supervisors

Prof. Mohamed Fathalla Mostafa

Prof. of Pediatrics
Head of Neonatal Intensive Care Unit
Faculty of Medicine
Ain -Shams University

Dr.Hebatalla Mohamed Attia

Assistant Prof. of Cardiology
Faculty of Medicine
Ain-Shams University

Prof. Nayera Ismail Attia

Prof. of Pediatrics Institute of Postgraduate Childhood Studies Ain -Shams University

Dr.Mervat Abd Elhameed Elfeky

Lecturer of Clinical and Chemical Pathology-Faculty of Medicine Ain-Shams University

Dr.Hala Gaber El Rabei

Fellow in Neonatal Intensive Care Unit Gynecology and Obstetric Hospital –Ain -Shams University

Institute of Post Graduate Childhood Studies
Ain Shams University
2010
Dedication

Dedicated with all affection to my mother **Dr. Zeinab Abdallah Ali,** consultant of Pediatrics, Al-Sahal Teaching Hospital.

To my husband Colonel Engineer Osama Mahmoud Soliman, and my dear children.

Whom their kindness, help and support can not be appreciated by words.

Reham Shaker 2010

Thanks first to God

Deep thanks and appreciation to **Prof Dr. Mohamed Fathalla Moustafa**, Professor of Pediatrics, Head of NICU, Faculty of Medicine, Ain Shams University, for giving me the privilege of working under his supervision and for his help and encouragement, his care and Kindness throughout this work.

I would like to express my deepest gratitude and sincere thanks to **Prof Dr. Nayera Ismail Attia,** professor of pediatrics, Institute of Post Graduate Childhood Studies, Medical Studies Department, Ain Shams University, **Who** inspired me the idea of the work, and for her sincere encouragement, keen guidance, and constructive criticism throughout this work.

I would like to express my deepest thanks and appreciations to Dr Hebatalla Mohamed Attia, Assistant professor of cardiology, Faculty of Medicine, Ain Shams University for her help and support.

I would like to express my deepest appreciation and gratitude to Dr. Hala Gaber El Rabei, Fellow in the NICU, Gynecology and Obstetric hospital, Ain Shams University, for her great support, valuable guidance.

Thanks are extended to **Dr. Mervat Abd El Moneim El Feky,** Lecturer of Clinical and Chemical Pathology, for her supervision and help.

Last, but not least, I would like to express my deep gratitude to all the staff members and my colleagues in NICU Obstetrics and Gynecology Hospital Ain Shams University and to all the newborn patients and their parents who allowed me to complete my work.

Reham Shaker 2010

Contents

Title	Page
List of abbreviations	i
List of Figures	iii
List of Tables	V
Introduction	1
Aim of the study	4
Review of the Literature	5
Chapter 1: Infant of A Diabetic Mother	5
 - Pathophysiology - Evaluation of IDM - Maternal outcome in pregestational and gestational diabetes - Neonatal outcome of infant of diabetic mothers - Management of infant of diabetic mother - Prognosis Chapter 2: Cardiac Disorders in Infant of Diabetic Mother - Cardiac disorders in infant of diabetic mother 	10 21 24 27 43 47 51 53
- Cardiac management of infant of diabetic mother	
Chapter 3: Echocardiography of Normal Neonates - Introduction - History - Echocardiographic evaluation of cardiac chambers - Echocardiographic windows - Abdominal situs and cardiac position	63 63 65 68 71 82
Chapter 4: Macrosomic Infant	94
- Pathophysiology- Consequences of fetal macrosomia- Frequency of macrosomia	95 97 102

-Clinical diagnosis of fetal macrosomia	103
-Antenatal management	111
-Prevention of macrosomia	112
Chapter 5: Insulin	113
-Introduction	113
-History	114
-Actions of Insulin	115
-Diseases associated with insulin	117
disturbances	
Chapter 6: Gycosylated Hemoglobin	118
-Introduction	118
-Interpretation of the results	120
-Indications of use	122
Patients & Methods	124
Results	137
Discussion	183
Summary	203
Conclusion	208
Recommendations	209
References	210
Appendix	248
Arabic summary	251

List of Abbreviations

AA	Arachidonic acid
AFI	Amniotic fluid index
AGA	Appropriate for gestational age
Ao	Aorta
ASD	Atrial septal defect
AV	Atrio-ventricular
BMI	Body mass index
BWS	Beckwith-Wiedemann syndrome
CHD	Congenital heart Diseases
CNCC	Cardiac neural crest cells
COX2	Cyclooxygenase 2
C-peptide	Connecting peptide
EC	Endocardial cushion
EDC	Estimated date of confinement
EDD	End diastolic dimensions
EDS	End systolic dimensions
EF	Ejection Fraction
EFW	Estimated fetal weight
FiO ₂	Fractional inspired oxygen concentration
FS	Fractional Shortening
GDM	Gestational Diabetes Mellitus
GIP	Glucose-dependent insulinotropic peptide
GK	Glucokinase
HBA1C	Glycated Hemoglobin A1C
HCMP	Hypertrophic cardiomyopathy

HDL	High density lipoprotein
IDM	Infant of Diabetic Mother
IGF-1	Insulin like growth factor-1
IGFBP-3	Insulin like growth factor–binding protein-3
IL	Interleukins
INF	Interferon
IUGR	Intra uterine growth retardation
IVC	Inferior vena cava
IVSD	Interventricular septum in diastole
IVSS	Interventricular septum in systole
LA	Left Atrium
LGA	Large for gestational age
L\S	Lecithin Sphingomylin ratio
LV	Left ventricle
LVED	Left ventricular end-diastolic dimension
LVES	Left ventricular end-systolic dimension
LVOT	Left ventricular outflow tract obstruction
LVPW	Left ventricular posterior wall
MBG	Mean blood Glucose
MODY	Maturity-onset diabetes of the young
MS	Metabolic syndrome
OFC	Occipito frontal circumference
OFT	Outflow tract
PDA	Patent ductus arteriosus
PFO	Patent foramen Ovale
PG	Prostaglandins
PO ₂	Oxygen pressure
PTA	Persistent truncus arteriosus

PWD	Posterior wall dimensions in diastole
RA	Right atrium
RDS	Respiratory distress syndrome
ROS	Reactive oxygen species
RV	Right ventricle
SA node	Sino-atrial node
SD	Standard deviation
SGA	Small for gestational age
SF	Shortening fraction
SVC	Superior vena cava
TEE	Trans-esophageal echocardiography
TGA	Transposition of Great Vessels
TH	T-helper cells
TNF-α	Tumor Necrosis Factor
VSD	Ventricular Septal Defect
ZnPP/H	Zinc protoporphyrin/heme

List of Figures

	Name	Page
1	The glucokinase (GK) mutations	29
2	Caudal regression syndrome in an infant of diabetic	36
	mother	
3	Pancreas of an Infant of diabetic mother	42
4	Chest X-ray showing significant cardiomegaly and	58
	pulmonary venous congestion in IDM	
5	Two-dimensional echocardiogram showing septal	59
	hypertrophy	
6	Gross anatomy of the heart	68
7	Thoracic imaging landmarks	69
8	Anatomical arrangement of the heart	69
9	Various transducer location in echocardiography	72
10	The subcostal view	74
11	Apical two chambers	74
12	Apical four chamber view	75
13	Left parasternal long axis	76
14	Short axis view aortic valve	76
15	Short axis view left ventricle	77
16	Suprasternal short-axis view	78
17	A sinus venosus defect is shown	80
18	The left ventricle	84
19	A dilated, hypokinetic right ventricle	88
20	Location of injury in soft tissue planes on the scalp and	98
	head	

21	Gycosylated hemoglobin level (A1C)	120
22	Ballard Score	127
23	Echocardiogram used in neonatal echocardiography	
24	Comparison between the studied groups as regards modes	139
	of delivery of the neonates under study	
25	Comparison between the studied groups as regards gender	139
	of the neonates under study.	
26	Comparison between the studied groups as regards the	140
	mean weight of the neonates under study	
27	Comparison between the studied groups as regards the	140
	mean Apgar score of the fifth minute of the neonates	
28	Comparison between the studied groups as regards type of	141
	resuscitation	
29	Comparison between the three studied groups as regards	142
	the mean Downes' and Silverman's scores	
30	Comparison between cases and control as regards serum	146
	sodium and potassium levels	
31	Comparison between the three studied groups as regards	149
	random blood sugar	
32	Comparison between the three studied groups as regards	149
	hemoglobin %	
33	Comparison between the three studied groups as regards	153
	the neonatal serum insulin level	
34	Comparison between the three studied groups as regards	153
	the maternal glycated hemoglobin level.	
35	Comparison between the two groups (1&2) as regards X-	157
	ray findings	
36	Comparison between the three studied groups as regards	158

	congenital heart defects	
37	Comparison between the three studied groups as regards	160
	congenital heart defects	
38	Frequency distribution of congenital heart defects in	161
	Infants of Diabetic Mothers	
39	Frequency distribution of congenital heart defects in	161
	Macrosomic neonates	
40	Comparisons between cases and control as regards IVSD	163
	dimensions	
41	Comparisons between cases and control as regards IVSS	163
	dimensions	
42	Comparisons between cases and control as regards PWD	164
	dimensions	
43	Comparisons between cases and control as regards FS	164
	dimensions	
44	Comparison between the three studied groups as regards	166
	posterior wall thickness.	
45	Comparison between the three studied groups as regards	166
	Inter ventricle septum dimensions during systole	
46	Correlation between weight and EF% in infants of diabetic	169
	mothers (group 1).	
47	Correlation between five minutes Apgar score and EDD in	171
	macrosomic neonates	
48	Correlation between random blood sugar and EF% in	174
	group 1 (IDM).	
49	Correlation between HBA1C and EF% in group 1 (IDM).	174
50	Correlation between HBA1C % and ESD in group 1	175
	(IDM).	

51	Correlation between maternal HBA1c with FS% in	177
	macrosomic neonates.	
52	Neonatal echocardiography of a normal neonate.	178
53	Neonatal echocardiography of a normal neonate.	178
54	Neonatal echocardiography of a normal neonate.	179
55	Neonatal echocardiography of a normal neonate.	179
56	Neonatal echocardiography of an infant of diabetic mother	180
57	Neonatal echocardiography of an infant of diabetic mother	181
58	Neonatal echocardiography of an infant of diabetic mother	182
59	Neonatal echocardiography of an infant of diabetic mother	182
60	Neonatal echocardiography of a macrosomic neonate	183

List of Tables

	Name	Page
1	Modified White's Classification of Diabetes Mellitus In	9
	Pregnancy	
2	Segmental approach to defining cardiac anatomy by	81
	echocardiography	
3	The approximate mapping between Hb _{A1c} values and	122
	average blood glucose measurements.	
4	Modified White's Classification of Diabetes Mellitus In	126
	Pregnancy	
5	Silverman Anderson retraction score	128
6	Downes' score	128
7	Description table of each group under study	138
8	Comparison between the three studied groups as regards	141
	type of resuscitation received by the neonates under study.	
9	Comparison between the three studied groups as regards the	142
	mean Downes' and Silverman's scores	
10	Comparison between the three studied groups as regards	143
	maternal history	
11	Comparison between the three studied groups as regards	143
	maternal history of medications	
12	Types of maternal diabetes in group I	144
13	Degree of control of diabetes in different groups	144
14	Comparison between cases and control as regards	145
	laboratory investigations	
15	Comparison between the three studied groups as regards	147
	Lab investigations done	

16	Comparison between cases and control as regards blood gas	150
	findings and oxygen saturation	
17	Comparison between the three studied groups as regards	151
	blood gas findings and oxygen saturation	
18	Comparison between the cases and control groups as	152
	regards the neonatal serum insulin level and the maternal	
	glycosylated hemoglobin levels	
19	Comparison between the three studied groups as regards the	152
	neonatal serum insulin level and the maternal HBA1C	
20	Comparison between White classification in Diabetic	152
	mothers as regards the neonatal serum insulin and maternal	
	glycosylated hemoglobin levels	
21	Correlation between clinical data of infants of diabetic	154
	mothers and neonatal serum random blood sugar, neonatal	
	serum insulin and maternal glycosylated hemoglobin levels.	
22	Correlation between clinical data of macrosomic neonates	154
	and neonatal serum random blood sugar, neonatal serum	
	insulin and maternal glycosylated hemoglobin levels.	
23	Correlation between laboratory data of infants of diabetic	155
	mothers and neonatal serum random blood sugar, neonatal	
	serum insulin and maternal glycosylated hemoglobin levels.	
24	Correlation between laboratory data of macrosomic	156
	neonates and neonatal serum random blood sugar, neonatal	
	serum insulin and maternal glycosylated hemoglobin levels.	
25	Comparison between IDM and macrosomic (groups I&II)	157
	as regards X-ray findings	
26	Frequency distribution of congenital heart diseases	158
	diagnosed by echocardiography among different groups.	

27	Frequency distribution of different congenital heart diseases	159
	diagnosed by echocardiography among the three groups.	
28	Comparison between two types of diabetes among diabetic	159
	mothers and the presence of congenital heart diseases	
	diagnosed by echocardiography in IDM neonates	
29	Comparison between cases and control as regards	162
	echocardiography findings	
30	Comparison between the three studied groups as regards	165
	parameters of echocardiography	
31	Comparison between types of diabetes mellitus as regards	167
	the neonatal echocardiography parameters	
32	Correlations between neonatal serum blood sugar, serum	168
	insulin, and maternal HBA1c with the echocardiography	
	parameters in control group	
33	Correlation between clinical data with echocardiographic	170
	parameters in macrosomic neonates (Group 2)	
34	Correlations between neonatal serum blood sugar, serum	172
	insulin, maternal HBA1c and the echocardiography	
	parameters in control group	
35	Correlations between neonatal serum insulin, maternal	173
	HBA1c and the parameters studied in echocardiography in	
	infants of diabetic mothers (Group 1)	
36	Correlation between neonatal serum insulin, maternal	177
	HBA1c with the parameters of echocardiography in	
	macrosomic neonates (Group 2).	