Ain Shams University Faculty of Science Chemistry Department

Analytical study for the determination of some drugs used in treatment of masculinity diseases

By

ETHAR ABD ELRAOUF MOHAMED

(M. Sc. Degree, Analytical Chemistry, Cairo University, 2012)

To

Chemistry Department
Faculty of Science
Ain Shams University

For

Ph.D. in Science (Analytical Chemistry)

Ain Shams University Faculty of Science Chemistry Department

Analytical study for the determination of some drugs used in treatment of masculinity diseases

By

ETHAR ABD ELRAOUF MOHAMED

A thesis submitted for Ph.D. in Science (Analytical Chemistry)
2016

Thesis advisors

Prof. Dr. Eglal Mariam Raymond Souaya

Professor of Inorganic and Analytical Chemistry, Chemistry Department, Faculty of Science, Ein-Shams University.

Prof. Dr. Fatma M. Abdel-Gawad

Professor of Analytical Chemistry, National Organization for Drug Control and Research (NODCAR).

Assis. Prof. Mona Mohamed Abdel-Moety

Assistant professor of Analytical Chemistry, National Organization for Drug Control and Research (NODCAR).

Approval Sheet for Submission

Title	of Ph	.D.	Th	esis:
1111	UI I II		T 11	COID

Analytical study for the determination of some drugs used in treatment of masculinity diseases.

Name of the candidate:

Ethar Abdelraouf Mohamed Soliman

This thesis has been approved for submission by the supervisors:

1. Prof. Dr. Eglal Mariam Raymond Souaya Signature:

2. Prof. Dr. Fatma M. Abdel-Gawad Signature:

3. Assis. Prof. Dr. Mona Mohamed Abdel-Moety Signature:

Prof. Dr. Ibrahim H. A. Badr

Chairman of Chemistry Department Faculty of Science, Ain Shams University

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to my supervisors, *Prof. Dr. Eglal Mariam Raymond Souaya* (department of Chemistry, faculty of Science, Ein-Shams university), for her continuous help and invaluable assistance, support and guidance. Deepest gratitudes are also due to my co-supervisors *Prof. Dr. Fatma M. Abdel-Gawad and Assis. Prof. Mona Mohammed Abdel-Moety* (NODCAR) for the unforgettable help, inspiration and support which they both consistently offered me throughout the entire PhD work.

I am grateful to *Assis. Prof. Ali Kamal Attia* for his unforgettable help in my work.

To the memory of my lovely father, may Allah rest his soul in peace and show his mercy on him. To my beloved mom, my sincere husband, my sweet kids, my sisters and my brother thank you for being in my life. Nothing would be possible without each and every one of you.

Lastly, I am deeply grateful and thankful for my colleagues in NODCAR. Their kindness and support was always given in abundance. Also, special thanks to *Eman Fathy Mohamed* and *Rasha Elgohary* for their continuous and valuable advices, they are true friends of mine and like sisters to me.

Ethar Abd Elraouf Mohamed

ABSTRACT

Name: Ethar Abdelraouf Mohamed Soliman

Title of thesis: Analytical study for the determination of some drugs used in treatment of masculinity diseases.

Degree: Ph.D., Faculty of science, Ain Shams University, 2016.

Four simple, accurate and sensitive methods were developed for the determination of two drugs used in treatment of masculinity diseases which are vardenafil (VAR) and dapoxetine (DAP) hydrochlorides in bulk powder and pharmaceutical formulations. Method I is based on spectrophotometric methods for simultaneous determination of VAR and DAP hydrochlorides in combined dosage form. These methods include: simultaneous equations, dual wave length, zero- crossing derivatives and first derivative of ratio spectrophotometry. Method II was thermal analysis. In this method thermal analysis techniques have been used to study the thermal behavior of VAR and DAP. This study has been confirmed using semi-empirical molecular orbital calculations. Method III involves the direct titration of VAR and DAP with NBS and the end point is determined potentiometrically. The proposal of the oxidation reaction pathway is postulated. Method IIII is high performance liquid chromatography (HPLC). Isocratic reversed phase HPLC method was applied for the simultaneous determination of VAR and DAP using C₈ column with UV detection at 230 nm, mobile phase phosphate buffer: acetonitrile (50: 50 v/v) and flow rate 1.5 min/mL. The analytical validations and recovery studies were performed to confirm the accuracy of the proposed methods. The methods were validated according to the International Conference on Harmonization (ICH) guideline.

Keywords: Vardenafil, Dapoxetine, Spectrophotometry, Thermal analysis, Potentiometric titration, High performance liquid chromatography, Bulk powder, Pharmaceutical formulations.

AIM OF THE PRESENT WORK

Vardenafil (VAR) and Dapoxetine (DAP) Hydrochlorides are very effective pharmaceutical formulations which are widely used in treatment of the two most prevalent masculinity dysfunctions which are erectile dysfunction (ED) and premature ejaculation (PE).

Recently, VAR has an official method for its determination, while DAP has not any pharmacopoeia method. But due to their therapeutic importance several analytical methods have been reported for their quantitative determination in bulk and/or dosage forms, either singly or in combination to each other. This is enhance the development of simple, accurate, sensitive and applicable methods for their determination in pure and dosage forms

The proposed methods for the simultaneous determination of VAR and DAP which are:

- Spectrophotometry.
- Thermal analysis.
- Potentiometric titration.
- High performance liquid chromatography (HPLC).

The common, availability of the instrumentation, simplicity of procedures, speed, precision and accuracy of the suggested methods make these methods more valuable and attractive for use.

• All the proposed methods were validated as per ICH guidelines.

LIST OF TABLES

		Page
Table 1	Analytical data for the determination of VAR and DAP in a binary mixture using simultaneous equation method	65
Table 2	Analysis of laboratory prepared mixtures containing different concentration ratios of VAR and DAP for the determination of VAR using simultaneous equation method	66
Table 3	Analysis of laboratory prepared mixtures containing different concentration ratios of DAP and VAR for the determination of DAP using simultaneous equation method	67
Table 4	Analytical data for the determination of VAR and DAP in a binary mixture using Dual wavelength method	72
Table 5	Analysis of laboratory prepared mixtures containing different concentration ratios of VAR and DAP for the determination of VAR using dual wavelength method	73
Table 6	Analysis of laboratory prepared mixtures containing different concentration ratios of DAP and VAR for the determination of DAP using dual wavelength method	74
Table 7	Analytical data for the determination of VAR and DAP using ¹ D method	79
Table 8	Analysis of laboratory prepared mixtures containing different concentration ratios of VAR and DAP for the determination of VAR using ¹ D method	80
Table 9	Analysis of laboratory prepared mixtures containing different concentration ratios of DAP and VAR for the determination of DAP using ¹ D method	81

Table 10	Analytical data for the determination of VAR and DAP by 2D method	86
Table 11	Analysis of laboratory prepared mixtures containing different concentration ratios of VAR and DAP for the determination of VAR using ² D method	87
Table 12	Analysis of laboratory prepared mixtures containing different concentration ratios of DAP and VAR for the determination of DAP using ² D method	88
Table 13	Analytical data for the determination of VAR and DAP by $^3\mathrm{D}$ method	92
Table 14	Analysis of laboratory prepared mixtures containing different concentration ratios of VAR and DAP for the determination of VAR using ³ D method	93
Table 15	Analysis of laboratory prepared mixtures containing different concentration ratios of DAP and VAR for the determination of DAP using ³ D method	94
Table 16	Analytical data for the determination of VAR and DAP by 4D method	98
Table 17	Analysis of laboratory prepared mixtures containing different concentration ratios of VAR and DAP for the determination of VAR using ⁴ D method	99
Table 18	Analysis of laboratory prepared mixtures containing different concentration ratios of DAP and VAR for the determination of DAP using ⁴ D method	100
Table 19	Divisor concentration effect on the determination of VAR $(2.0-16.0~\mu g~mL^{-1})$ in a binary mixture of VAR and DAP using ^{1}DD method	103
Table 20	Divisor concentration effect on the determination of DAP (0.5–10.0 µg mL ⁻¹) in a binary mixture of VAR and DAP	104

Table 21	Analytical data for the determination of VAR and DAP using ¹ DD method	110
Table 22	Analysis of laboratory prepared mixtures containing different concentration ratios of VAR and DAP for the determination of VAR using ^{1}DD method (λ =241.9 nm)	111
Table 23	Analysis of laboratory prepared mixtures containing different concentration ratios of DAP and VAR for the determination of DAP using 1 DD method (λ = 238.5 nm)	112
Table 24	Accuracy data for the analysis of pure samples of VAR and DAP in bulk powder using the proposed 1, 2, 3 and 4 methods	117
Table 25	Intraday and interday precision for the determination of VAR and DAP in bulk powder using the proposed 1, 2, 3 and 4 methods	118
Table 26	Application of standard addition method on Livetra Super Force tablets for the determination of VAR and DAP by 1, 2, 3, and 4 methods	120
Table 27	Results of the determination of VAR and DAP using 1, 2, 3 and 4 methods and compared to HPLC method in bulk powder and in commercial tablets	121
Table 28	Comparison of computed bond length (A°) and bond order for VAR	130
Table 29	Comparison of computed bond length (A^{o}) and bond order for DAP	131
Table 30	Thermodynamic parameters of thermal decomposition of VAR	134
Table 31	Thermodynamic parameters of thermal decomposition of DAP	134

Table 32	Melting point and degree of purity of DAP and VAR	137
Table 33	Endothermic and exothermic peaks of inactive ingredients	140
Table 34	Linearity parameters obtained from potentiometric determination of VAR and DAP using NBS	164
Table 35	Potentiometric titration recovery studies of standard additions to some pharmaceutical preparations using NBS	166
Table 36	The potentiometric titration for determination of VAR and DAP in their bulk powder and in pharmaceutical preparations using NBS	167
Table 37	The system suitability parameters of columns used in the separation of VAR and DAP	179
Table 38	System suitability criteria	181
Table 39	Summary of system suitability criteria fordetermination of VAR and DAP by the proposed HPLC method	183
Table 40	Injection repeatability data assay of VAR (10 $\mu g/mL$) and DAP (30 $\mu g/mL$) using the proposed HPLC method.	184
Table 41	Linearity parameters for the determination of VAR and DAP using the proposed HPLC method.	186
Table 42	Accuracy data for the analysis of pure samples of VAR and DAP by the proposed HPLC method	190
Table 43	Intraday and interday precision for the determination of VAR and DAP in bulk powder using the proposed HPLC method	191

Table 44	Standard addition method for the determination of VAR and DAP in pharmaceutical formulations by HPLC method	192
Table 45	System suitability parameters and robustness in normal and changed condition for the determination of VAR and DAP by the proposed HPLC method.	193
Table 46	Statistical comparison between the results obtained by the HPLC method and the HPLC reference methods for the analysis of VAR and DAP in pharmaceutical formulations	197

LIST OF FIGURES

Page		
58	Overlay absorption spectra of the both drugs of interest VAR and DAP.	Figure 1
59	Absorption spectra of solutions with concentration of 10.0 µg mL ⁻¹ of: b) DAP, c) VAR and a) mixture of VAR and DAP. (The selected working wavelengths were indicated by arrows).	Figure 2
64	Calibration curves for the determination of VAR using simultaneous equation method at: (a) VAR $\lambda_{max} = 245.5$ nm, (b) DAP $\lambda_{max} = 291.7$ nm.	Figure 3
64	Calibration curves for the determination of DAP using simultaneous equation method at: (a) DAP λ_{max} = 291.7 nm, (b) VAR λ_{max} = 245.5 nm.	Figure 4
70	Absorption spectra of solutions with concentration of 20.0 μg mL ⁻¹ for VAR and 12.0 μg mL ⁻¹ for DAP, showing the selected wavelengths for the absorbance difference determination of both drugs.	Figure 5
71	Calibration curves for the determination of (a) VAR and (b) DAP using Dual wavelength method at the selected wavelengths for the absorbance differences	Figure 6
76	First derivative (1 D) spectrum for VAR (2.0 – 16.0 µg mL $^{-1}$) in methanol.	Figure 7
76	First derivative (1 D) spectrum for DAP (0.5 – 10.0 $\mu g \text{ mL}^{-1}$) in methanol.	Figure 8
78	Calibration curves for the determination of VAR using the ¹ D method at: (a) 226.5 nm, (b) 247.8 nm.	Figure 9

Figure 10	Calibration curves for the determination of DAP using ¹ D method at: (a) 213.6 nm, (b) 240.8 nm.	78
Figure 11	Second derivative (2 D) spectra for VAR ($2.0-16.0$ µg mL $^{-1}$) in methanol.	83
Figure 12	Second derivative (2 D) spectra for DAP (0.5 – 10.0 $\mu g \ mL^{-1}$) in methanol.	83
Figure 13	Calibration curves for the determination of VAR using ² D method at: (a) 253.1 nm, (b) 260.9 nm.	85
Figure 14	Calibration curves for the determination of DAP using ² D method at: (a) 223.1 nm, (b) 240.9 nm.	85
Figure 15	Third derivative (3 D) spectra for VAR ($2.0-16.0~\mu g$ mL $^{-1}$) in methanol.	89
Figure 16	Third derivative (3 D) spectra for DAP (1 – 10.0 μ g mL $^{-1}$) in methanol.	90
Figure 17	Calibration curves for the determination of VAR using ³ D method at: (a) 256.1 nm, (b) 263.8 nm.	91
Figure 18	Calibration curve for the determination of DAP using ³ D method at 248.2 nm.	91
Figure 19	Fourth derivative (4 D) spectra for VAR ($4.0 - 16.0 \mu g mL^{-1}$) in methanol.	95
Figure 20	Fourth derivative (4 D) spectra for DAP ($2.0-10.0$ µg mL $^{-1}$) in methanol.	96
Figure 21	Calibration curves for the determination of VAR using ⁴ D method at: (a) 219.4 nm, (b) 260.3 nm.	97
Figure22	Calibration curve for the determination of DAP using ⁴ D method at 240.8 nm.	97

Figure 23	Ratio spectra of different concentrations of VAR (2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0 and 16.0 µg mL ⁻¹) divided by zero-order absorption spectra of DAP (10.0 µg mL ⁻¹).	105
Figure 24	First derivative of ratio spectra (¹ DD) for different concentrations of VAR (2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0 and 16.0µg mL ⁻¹) using DAP (10.0 µg mL ⁻¹) as a divisor.	106
Figure 25	Ratio spectra of different concentrations of DAP (3.0, 4.0, 5.0, 6.0, 8.0 and 10.0 μg mL ⁻¹) divided by the zero-order absorption spectra of VAR (16.0 μg mL ⁻¹).	107
Figure 26	First derivative of ratio spectra (¹ DD) for different concentrations of DAP (3.0, 4.0, 5.0, 6.0, 8.0 and 10.0 µg mL ⁻¹) using VAR (16.0 µg mL ⁻¹) as a divisor.	107
Figure 27	Calibration curves for the determination of VAR using DAP (10.0 µg mL ⁻¹) as a divisor in ¹ DD method at: 241.9 nm, and b) 253.8 nm.	109
Figure 28	Calibration curves for the determination of DAP using VAR (16.0 μg mL ⁻¹) as a divisor in ¹ DD method at: 238.5 nm, and (b) 324.6 nm.	109
Figure 29	$TGA\ (black)$, $DrTGA\ (red)$ and $DTA\ (blue)$ curves of VAR .	125
Figure 30	TGA(black) , DrTGA (red) and DTA (blue) curves of DAP.	127
Figure 31	The structural numbering of VAR	129
Figure 32	The structural numbering of DAP.	129

Figure 33	DSC curves of (a) VAR and (b) DAP	137
Figure 34	DTA curves of (a) VAR and Rectivard tablets, (b) DAP and Joypox tablets.	139
Figure 35	DTA curves of some inactive ingredients present in Rectivard and Joypox tablets as lactose monohydrate, starch, magnesium stearate, microcrystalline cellulose and povidone.	140
Figure 36	DSC curves of (a) Rectivard and (b)Joypox tablets.	141
Figure 37	Effect of acid (1.0 ml of 2 M) on the potentiometric titration of VAR, and DAP (2 ml of 10^{-3} M) with NBS ($2x10^{-3}$ M), using: (1) Sulphuric, (2) Hydrochloric, (3) Perchloric, and (4) Nitric acids, total volume = 50 ml.	144
Figure 38	Effect of H_2SO_4 and $HClO_4$ concentration on the potentiometric titration of VAR and DAP, respectively, (2 ml of 10^{-3} M) vs. NBS ($2x10^{-3}$ M), using (1) 1.0 ml, (2) 2.0 ml, (3) 3.0 ml, (4) 4.0 ml of 2 M of each acids, total volume = 50 ml.	145
Figure 39	Effect of dilution on potentiometric titration of (2.0 ml of 10 ⁻³ M) VAR and DAP with NBS (2x10 ⁻³ M), using (1.0 ml of 2 M) H2SO ₄ and (2.0 ml of 2 M) HClO ₄ , using: (1) 25 ml, (2) 50 ml, (3) 75 ml	146
Figure 40	Effect of NBS concentration on potentiometric titration of (2.0 ml of 10^{-3} M) VAR and DAP using (1.0 ml of 2 M) H2SO ₄ and (2.0 ml of 2 M) HClO ₄ , using: (1) 10^{-3} M, (2) 2×10^{-3} M, (3) 3×10^{-3} M, and (4) 4×10^{-3} M	147