

Ain shams University
Faculty College of Women for
(Arts, science and Education)
Physics Department

Preparation and physical properties of CuSbS₂ thin films A Thesis

Submitted to Physics Department
Faculty College of Women for (Arts, science and Education)
Ain shams University

For the Ph.D. Degree in solid state Physics

By

Islam Mohamed Ahmed Ibrahim El Radaf M. Sc. Solid State Physics

Supervision Committee

Prof. Dr. Massarat Bakr Seddik

Osman

Prof. of Solid State Physics
Physics Department
University Collage of Women for
Arts, Science, and Education
Ain Shams University

Prof. Dr. Abdel Rahman Mohamed Salem

Prof. of Solid State Physics Electron Microscope and Thin Films Department Physics Division National Research Center

Prof. Dr. Siham Mahmoud Mohamed

Salem

Prof. of Solid State Physics Electron Microscope and Thin Films Department Physics Division National Research Center

Prof. Dr. Gamal Bakr Hassan Sakr

Prof. of Solid State Physics Physics Department Facility of Education Ain Shams University

Ain shams University
Faculty College of Women for
(Arts, science and Education)
Physics Department

Preparation and physical properties of CuSbS₂ thin films Thesis Submitted

For the Ph.D. Degree in solid state Physics

By

Islam Mohamed Ahmed Ibrahim El Radaf

Supervision Committee

Prof. Dr. Massarat Bakr Seddik

Osman

Prof. of Solid State Physics
Physics Department
University Collage of Women for
Arts, Science, and Education
Ain Shams University

Prof. Dr. Abdel Rahman Mohamed Salem

Prof. of Solid State Physics Electron Microscope and Thin Films Department Physics Division National Research Center

Prof. Dr. Siham Mahmoud Mohamed

Salem

Prof. of Solid State Physics Electron Microscope and Thin Films Department Physics Division National Research Center

Prof. Dr. Gamal Bakr Hassan Sakr

Prof. of Solid State Physics Physics Department Facility of Education Ain Shams University

Date of Research: / / 2015

Approval Stamp: Date of Approval: //2015

Approval of Faculty Council. Approval of University Council.

NAME OF STUDENT: Islam Mohamed Ahmed Ibrahim

TITLE OF THESIS: Preparation and physical

properties of CuSbS₂ thin films.

SCIENTIFIC DEGREE: DOCTOR OF PHILOSOPHY

IN PHYSICS -SOLID STATE

PHYSICS.

DEPARTMENT: PHYSICS

NAME OF FACULTY: FACULTY COLLAGE OF

WOMEN FOR ARTS,

SCIENCE, AND EDUCATION.

UNIVERSITY: AIN SHAMS.

B. SC. GRADUATION 2005

DATE:

M. SC. GRADUATION 2011

DATE:

Ph. D. GRADUATION DATE: 2015

	CONTENTS	Page
		no
Title pa	ge	i
Content	s	V
Acknow	ledgements	X
	Figures	xvi
	Tables	XX
	t	XXV
	ds	xxvii
Aim of t	he work	xxviii
	Chapter I	
1 1	GENERAL INTRODUCTION Thin film	1
1.1	Thin film	1 3
1.2	Semiconductor materials	3 4
1.3 1.4	Conductivity, Resistivity and sheet resistance	8
1.4.1	Applications of semiconductor thin films	9
1.4.1	Solar cells applications	10
1.4.2	Thermoelectric applications	10
1.4.3	Light emitting diodes	10
1.4.4	Biological applications.	10
1.5	Types of optical transitions	12
1.0	Literature survey on the CuSbS ₂ thin films CHAPTER II	12
	THEORETICAL BACKGROUND	
2.1	Difference between semiconductors, insulators	29
2.1	and conductors	2)
2.1.1	Difference in electrical conductivity	29
2.1.2	Difference in the band gap	
2.2	Types of Semiconductor	33
2.2.1	Intrinsic Semiconductors	33
2.2.2	Extrinsic Semiconductors	36
2.3	Solar Energy	39

2.4	Light Absorption	40
2.5	The photovoltaic effect	42
2.6	Benefits of photovoltaic	46
2.7	Basics of the p-n Junction	47
2.7.1	The p-n Junction	47
2.7.2	Equivalent circuit of solar cell	49
2.8	solar cell	50
2.9	Requirements of the materials in Solar cell	51
2.10	Structure of solar cell	54
2.11	Solar cell principle	55
2.12	Solar cell parameters	56
2.13	Losses in a solar cell	59
2.14	Methods of reducing the optical losses	62
	CHAPTER III	
	EXPERIMENTAL TECHNIQUES	
3.1	Substrate Cleaning	64
3.2	The chemical bath deposition technique	65
3.2.1	Principle of chemical bath deposition technique	65
3.2.2	Factors influencing the chemical bath deposition	69
	process	
3.2.3	Film thickness measurements for chemically	71
	deposited thin films	
3.2.4	Preparation of CuSbS ₂ powder and thin films	72
3.2.5	Preparation of CdS powder and thin film	74
3.3	Thermal evaporation	75
3.3.1	Thermal evaporation technique	75
3.3.2	Advantages of vacuum evaporation method	76
3.3.3	Quartz crystal thickness monitor	78
3.4	Thermal analysis	80
3.5	Theoretical background of X-ray diffraction	81
3.5.1	Basics of X-ray diffraction	81
3.5.2	The Bragg condition	83
3.6	Transmission electron microscope	87
3.6.1	Operation of Transmission electron microscopy	87
3.6.2	Sample preparation for TEM investigation	89
3.6.3	Electron diffraction	90

3.7	Scanning Electron Microscope (SEM)	92
3.8	Energy dispersive X-ray spectroscopy (EDX)	96
3.9	Spectrophotometric measurements	98
3.10	Electrical Measurements	101
3.10.1	Carrier type determination	101
3.10.2	The current-voltage characteristic of MSM	103
	configuration system	
3.10.3	DC conductivity measurements	104
3.11	Fabrication and characterization of solar cells	106
3.11.1	Fabrication of solar cells	106
3.11.2	Current-Voltage Measurements	107
	CHAPTER IV	
	CHARACTERIZATION OF CuSbS ₂ and CdS	
	thin films	
4.1	Structural characterizations of the CuSbS ₂ samples	109
41.1	The X-ray diffraction analysis of the prepared	109
	CuSbS ₂ powder	
4.1.2	Differential thermal analysis (DTA)	113
4.1.3	X-ray diffraction analysis of CuSbS ₂ thin films	116
4.1.4	Transmission electron microscope and electron	122
	diffraction of as deposited and annealed CuSbS ₂	
	thin films	
4.1.5	Scanning electron microscope and EDX spectra of	124
	as-deposited CuSbS ₂ thin films.	
4.1.6	Scanning electron microscope and EDX spectra of	128
	annealed CuSbS ₂ thin films	
4.2	Optical properties of CuSbS ₂ thin films	133
4.2.1	Optical properties of as-deposited CuSbS ₂ thin films	133
4.2.2	Effects of annealing temperature on the optical	143
	properties of CuSbS ₂ thin films	
4.3	Electrical properties of CuSbS ₂ thin films	153
4.3.1	Identification of the material conduction type	153
4.3.2	I-V characteristics of CuSbS ₂ thin films	154
4.3.3	The temperature dependence of electrical resistance,	158
	dc conductivity and activation energy for CuSbS ₂	
	thin films	

4.4	Structural characterizations of the CdS samples	168
4.4.1	The X-ray diffraction analysis of the prepared CdS	168
	powder	
4.4.2	X-ray diffraction analysis of CdS thin film	170
4.4.3	Transmission electron microscope and electron	171
	diffraction of as deposited CdS thin film	
4.4.4	Scanning electron microscope and EDX spectra of	172
	as-deposited CdS thin film	
4.5	Optical properties of as-deposited CdS thin films	174
4.6	Electrical properties of CdS thin film	179
4.6.1	Identification of the material conduction type	179
4.6.2	I-V characteristics of CdS thin films	180
4.6.3	The temperature dependence of electrical resistance,	181
	dc conductivity and activation energy for CdS thin	
	films	
CHAPTER V		
	Solar Cells Fabrication	
5.1	Fabrication and characterization of chemically	185
	prepared [FTO / CdS/ CuSbS ₂ /Ag] solar cell	
5.2	Fabrication and characterization of [FTO / CdS/	188
	CuSbS ₂ / metal electrode] solar cells by thermal	
	evaporation	
	•	
5.2.1	The Dark and illumination I–V characteristics for the	189
	[FTO / CdS/ CuSbS ₂ / different metal electrode] solar	
	cells	
5.2.2	The calculations of solar cell parameters for the [FTc	191
	/ CdS/ CuSbS ₂ / different metal electrode] solar cells.	
5 2 2 1	The coloulations of resistance D and the diade	101
5.2.2.1	The calculations of resistance R _s and the diode	191
	ideality factors for the [FTO / CdS/ CuSbS ₂ / different metal electrode] solar cells	
	different inetal electrodej solal telis	

5.2.2.2	The calculations of the Fill factor efficiency for the [FTO / CdS/ CuSbS ₂ / / different metal electrode] solar cells prepared by thermal evaporation	195
5.3	Fabrication and characterization of [Al/ Si (n-type) /CuSbS ₂ / different metal electrode] solar cells by thermal evaporation.	200
5.3.1	The Dark and illumination I–V characteristics for the [Al/ Si (n-type)/ CuSbS ₂ / different metal electrode] solar cells	201
5.3.2	The calculations of solar cell parameters for [Al/ Si / $(n-type)$ / CuSbS $_2$ / different metal electrode] solar cells.	203
5.3.2.1	The calculations of resistance R_s and the diode ideality factors for the [Al/ Si/ (n-type)/ CuSbS $_2$ / different metal electrode] solar cells	203
5.3.2.2	The calculations of the Fill factor efficiency for the [Al/ Si/ (n-type)/ CuSbS ₂ / different metal electrode] solar cells	206
	Conclusion.	211
	ReferenceArabic Summary	219 230

Fig. 2.1	Schematic illustrations of typical band diagrams for a metal, an intrinsic semiconductor and an insulator.	Page no
Fig. 2.2	Energy band diagram for direct and indirect semiconductors.	32
Fig. 2.3	The Fermi level in an intrinsic semiconductor lies in the middle of the energy gap.	34
Fig. 2.4	Energy band of extrinsic semiconductors with (a) donor ions and (b) acceptor ions.	37
Fig. 2.5	Illustrating the absorption of a photon in a semiconductor with bandgap Eg . The photon with energy h ν excites an electron from E_i to E_f .	44
Fig. 2.6	Schematic diagram of a p-n Junction.	48
Fig. 2.7	Creation of internal electric field in the p-n Junction.	48
Fig. 2.8	Equivalent Circuit of a Solar Cell.	49
Fig. 2.9	Schematic diagram of the solar cell layers.	51
Fig. 2.10	Illustrating the substrate structure of the solar cell.	54
Fig. 2.11	Illustrating the superstrate structure of the solar cell.	54

Fig. 2.12	Band Diagram and Electron-Hole Pair Production.	56
Fig. 2.13	Current-voltage characteristics of a solar cell in dark and under illumination.	56
Fig. 2.14	Current-voltage characteristics of a solar cell parameter calculation.	58
Fig. 2.15	Anti Reflective Coating and Textured Cell Surface.	60
Fig.3.1	Schematic diagram of Chemical bath deposition technique.	66
Fig. 3.2 Fig. 3.3	A scheme of the evaporation process. A photograph of the E 306 A, Edwards coating unit.	76 77
Fig. 3.4	A photograph of the quartz crystal thickness monitor.	79
Fig. 3.5	A photograph of the DTA model NETZSCH STA 409 Differential thermal analysis.	81
Fig. 3.6	Bragg diffraction.	83
Fig. 3.7	Schematic of an X-ray diffractometer.	85
Fig. 3.8	Panalytical's X-ray diffractometer.	86
Fig. 3.9	Block diagram of a typical transmission electron microscope.	88
Fig. 3.10	Photograph of TEM (Type JEOL JEM-	90
Fig. 3.11	1230). Illustrating the electron beam-path in a	92

TEM.

Fig. 3.12	A schematic diagram of the energetic electrons in the microscope strike the sample and the various reactions that can occur.	93
Fig. 3.13		94
Fig. 3.14	Photographic plate of scanning electron microscope interfaced with EDX unit.	96
Fig. 3.15	Photographic plate of double beam spectrophotometer.	100
Fig. 3.16	A schematic representation of Hot point probe.	102
Fig. 3.17	Illustrating of MSM configuration system.	103
Fig. 3.18	Schametic diagram of the set-up for measuring the film resistance.	105
Fig. 3.19	A schematic diagram illustrating the electrical measuring circuit.	105
Fig. 3.20	Photograph of [FTO/ CdS/ CuSbS ₂ / different metal electrode] solar cells.	106
Fig. 3.21	Photograph of Al/ n-Si/ CuSbS ₂ / different metal electrode solar cell.	107
Fig.3.22	Photograph of Keithley I-V system model 2635 A.	108
Fig. 3.23 Fig. 4.1		108 110

collected from the bath.

Fig. 4.2	DTA of CuSbS ₂ powder.	115
Fig. 4.3	X-ray diffraction patterns of as-deposited CuSbS ₂ thin films with different deposition times 1h, 3h, 5h, 7h and 9h.	116
Fig. 4.4	X-ray diffraction patterns of CuSbS ₂ thin films with different deposition times 1h, 3h, 5h, 7h and 9h, annealed at 523K for 1h in Argon atmosphere.	117
Fig. 4.5	X-ray diffraction patterns of CuSbS ₂ film deposited at 9h and annealed at different annealing temperatures 573 k, 598 k, 623 k and 673 k.	119
Fig. 4.6 a	TEM and the corresponding electron diffraction patterns of as-deposited CuSbS ₂ film of thickness 80 nm.	123
Fig. 4.6 b	TEM and the corresponding electron diffraction patterns of CuSbS ₂ film annealed at 523 K of thickness 80 nm.	123
Fig. 4.6 c	TEM and the corresponding electron diffraction patterns of CuSbS ₂ film annealed at 573 K of thickness 80 nm.	124
Fig. 4.7 a	SEM and EDX spectra of the as deposited CuSbS ₂ films deposited at 3h.	125
Fig. 4.7 b	SEM and EDX spectra of the as deposited CuSbS ₂ films deposited at 5h.	126

Fig. 4.7 c	SEM and EDX spectra of the as deposited CuSbS ₂ films deposited at 7h.	126
Fig. 4.7 d	SEM and EDX spectra of the as deposited CuSbS ₂ films deposited at 9h.	127
Fig. 4.8 a	The EDX spectra and the scanning electron microscope of as-deposited CuSbS ₂ thin film deposited at 9h.	129
Fig. 4.8 b	The EDX spectra and the scanning electron microscope of CuSbS ₂ thin film deposited at 9h annealed at 523 k.	130
Fig. 4.8 c	The EDX spectra and the scanning electron microscope of CuSbS ₂ thin Film deposited at 9h annealed at 573 k.	130
Fig. 4.8 d	The EDX spectra and the scanning electron microscope of CuSbS ₂ thin Film deposited at 9h annealed at 623 k.	131
Fig. 4.9 a	Transmittance (T) against wavelength (λ) in as-deposited CuSbS ₂ thin films at different deposition times 1h, 3h, 5h, 7h and 9h.	134
Fig. 4.9 b	Reflectance (R) against wavelength (λ) in as-deposited CuSbS ₂ thin films at different deposition times 1h, 3h, 5h, 7h and 9h.	135
Fig. 4.10	The refractive index (n) vs. wavelength (λ) of CuSbS ₂ thin films at different deposition times 1h, 3h, 5h, 7h and 9h.	136

Fig. 4.11	The extinction coefficient, (k) vs. wavelength (λ) of CuSbS ₂ thin films at different deposition times 1h, 3h, 5h, 7h and 9h.	137
Fig. 4.12	The absorption coefficient (α) vs. photon energy of CuSbS ₂ thin films at different deposition times 1h, 3h, 5h, 7h and 9h.	139
Fig. 4.13	Plot of $(\alpha\hbar\omega)^2$ vs. $\hbar\omega$ for the as deposited CuSbS ₂ thin films.	141
Fig. 4.14	Shows direct energy gap $E_{\rm g}$ versus the film thickness.	143
Fig. 4.15	Transmission spectra for the CuSbS ₂ thin film deposited at 9h and annealed at different annealing temperatures 573 k, 598 k, 623 k and 673 k.	145
Fig. 4.16	Reflection spectra for the CuSbS ₂ thin film deposited at 9h and annealed at different annealing temperatures 573 k, 598 k, 623 k and 673 k.	145
Fig. 4.17	Shows the refractive index for the CuSbS ₂ thin film deposited at 9h and annealed at different annealing temperatures 573 k, 598 k, 623 k and 673 k.	146
Fig. 4.18	Variation of the extinction coefficient vs. wavelength for the as-deposited and annealed $CuSbS_2$ thin films.	147
Fig. 4.19	Variation of absorption coefficient (α) with photon energy for the as-deposited and annealed CuSbS ₂ thin films.	148

Fig. 4.20	A plot of $(\alpha\hbar\omega)^2$ vs. photon energy $(\hbar\omega)$ for the as-deposited and annealed CuSbS ₂ thin films.	150
Fig. 4.21	The dependence of the direct optical band gap of CuSbS_2 films on the annealing temperature.	152
Fig. 4.22	Experimental set-up of the hot probe experiment.	153
Fig. 4.23 a	I-V characteristics curve of CuSbS ₂ thin film with deposition time 5h sandwiched between two metallic Ag electrodes.	155
Fig. 4.23 b	I-V characteristics curve of CuSbS ₂ thin film with deposition time 7h sandwiched between two metallic Ag electrodes.	155
Fig. 4.23 c	I-V characteristics curve of CuSbS ₂ thin film with deposition time 9h sandwiched between two metallic Ag electrodes.	156
Fig. 4.24 a	I-V characteristics curve of CuSbS ₂ thin film with deposition time 5h sandwiched between two metallic Ag and Al electrodes.	157
Fig. 4.24 b	I-V characteristics curve of CuSbS ₂ thin film with deposition time 7h sandwiched between two metallic Ag and Al electrodes.	157
Fig. 4.24 c	I-V characteristics curve of CuSbS ₂ thin film with deposition time 9h sandwiched between two metallic Ag and Al electrodes.	158