

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

Department of Mathematics

Properties of Certain Classes of Finite Groups

A thesis

submitted for the award of the Ph. D. degree (Pure Mathematics)

By

Abd El Rahman Abd El Hamid Heliel

B. Sc. in Mathematics, Cairo University, 1990 M. Sc. in Pure Mathematics, Cairo University, 1996

Supervised by

Prof. Dr. M. Asaad

Professor of Pure Mathematics, Faculty of Science, Cairo University

March 2001

Approval Sheet

Title of the Ph. D. Thesis:

Properties of Certain Classes of Finite Groups

Name of the candidate:

Abd El Rahman Abd El Hamid Heliel

Submitted to:

Faculty of Science - Cairo University

Supervision Committee:

Prof. Dr. M. Asaad

Professor of Pure Mathematics, Faculty of Science, Cairo University

Head of Mathematics Department

Prof. Dr. B. T. Hassan

R. Hesse

Acknowledgements

All gratitude is due to **GOD** almighty who guided and aided me to bring forth this thesis to light.

My sincere thanks are dedicated to my supervisor **Prof. Dr. M. Asaad** for suggesting the topics of this thesis, for his excellent guidance and helpful discussions, and for continuous encouragement at all times.

I wish to take this opportunity to thank **Prof. Dr. E. H. Doha** and **Prof. Dr. I. A. Amin**, Professors of Mathematics,
Faculty of Science, Cairo University, for their useful advises and
heartily encouragement all the times.

My final thanks go to my wife for all her love and patience throughout the work in this thesis.

A.A.Heliel

Abstract

A finite group G is said to be a T_0 -group if every subnormal subgroup of $G/\Phi(G)$ is normal in $G/\Phi(G)$, where $\Phi(G)$ stands for the Frattini subgroup (the intersection of all maximal subgroups) of G. The principal aim of this thesis is twofold:

- 1- To determine the structure of a finite group G all of its proper subgroups are $T_{\rm o}$ -groups.
- 2- To study the structure of a finite group G under the assumption that certain subgroups of prime power order are well-situated in G.

Contents

Contents

General introduction	-
CHAPTER I	-
Notation, definitions and basic properties	ŧ
CHAPTER II	
Known results and their consequences	15
2.1. Introduction2.2. Known results and their consequences	15 15
CHAPTER III	
Finite groups in which normality	
is a transitive relation	27
 3.1. Introduction 3.2. On solvable T-groups 3.3. Minimal non T_o-groups 	27 29 32
CHAPTER IV	
On permutable subgroups of finite groups	39
4.1. Introduction	39
4.2. Preliminaries	40
4.3. On permutable subgroups of finite groups	44

CHAPTER V

On S-quasinormally embedded subgroups	
of finite groups	53
5.1. Introduction	53
5.2. Preliminaries5.3. On S-quasinormally embedded subgroups	54
of finite groups	56
CHAPTER VI	
Sufficient conditions for the supersolvability	
of finite groups	65
6.1. Introduction6.2. Sufficient conditions for the supersolvability	65
of finite groups	. 66
References	78
Arabic summary	

General introduction

General introduction

In this thesis only finite groups are considered. A group G is said to be a T_0 -group if every subnormal subgroup of $G/\Phi(G)$ is normal in $G/\Phi(G)$, where $\Phi(G)$ stands for the Frattini subgroup (the intersection of all maximal subgroups) of G. The principal aim of this thesis is twofold:

- 1- To determine the structure of a group G all of its proper subgroups are T_0 -groups.
- 2- To study the structure of a group G under the assumption that certain subgroups of prime power order are well-situated in G.

This thesis includes six Chapters:

CHAPTER I. This Chapter is concerned with establishing the notation and the basic definitions that will be used throughout the thesis.

CHAPTER II. We list a number of well known results which will be used throughout the thesis, referring the reader to their proofs in the literature. We also prove some of the easier ones that are used often in the thesis.

CHAPTER III. Following van der Waall and Fransman [25], we say that G is a T_0 -group, if its Frattini quotient group $G/\Phi(G)$ is a T-group, where by a T-group we mean a group in which every subnormal subgroup is normal. It is clear that the class of T_0 -groups contains the classes of T-groups and nilpotent groups. In [16], Gaschütz proved that every solvable T-group is a subgroup closed T-group (the group and all of its subgroups are T-groups). In contrast to Gaschütz's fact and the fact that every nilpotent group is a subgroup closed, we show by example that a solvable T_0 -group is not a subgroup closed T_0 -group (the group and all of its subgroups are T_0 -groups).

The purpose of this Chapter is twofold:

- (i) To present another characterization of solvable T-groups, and to give a sufficient condition for a group G to be a solvable T-group.
- (ii) To determine the structure of a group G if it is not T_0 -group but all its proper subgroups are T_0 -groups.

CHAPTER IV. Following Kegel [19], we say that a subgroup of a group G is S-quasinormal in G if it permutes with every Sylow subgroup of G. In this Chapter we introduce a new subgroup embedding property called \mathfrak{Z} -permutable. It is closely related to S-quasinormality. We say that \mathfrak{Z} is a complete set of Sylow