Biological Markers for Chemotherapy Induced toxicities in Patients with Malignancy

Thesis
Submitted for the partial fulfillment of the M.D. degree in
Pediatrics

Presented by Rasha Adel Fathy Thabet

M.B.B.Ch., M.Sc. pediatrics Ain Shams University

Under supervision of **Prof. Dr./ Galila Mohamed Mokhtar**

Professor of Pediatrics

Head of Pediatric Department and Hematolo-oncology Unit Faculty of

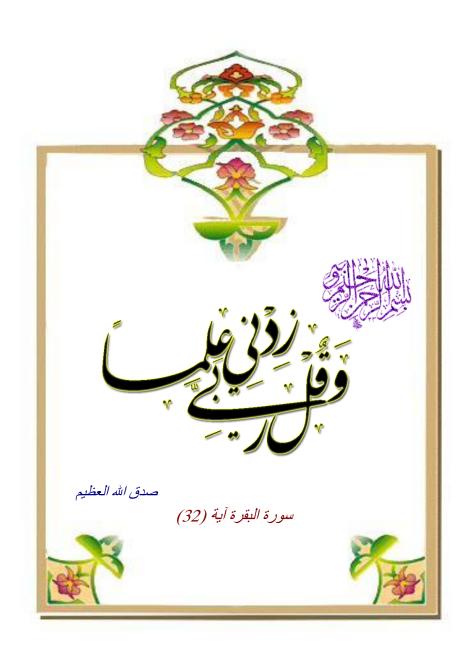
Medicine, Ain Shams University

Prof. Dr. /Lobna Mohamed El Amin Shalaby

Professor of Pediatric Oncology Head of Pediatric Oncology Department of National Cancer Institute Faculty of Medicine, Cairo University

Prof. Dr./ Eman Mounir Sherif

Professor of Pediatrics Faculty of Medicine, Ain Shams University


Prof. Dr. / Manal Mohamed Abd el Aziz

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. / Samar Mohamed Farid

Ass. Professor of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine, Ain Shams University 2014

Acknowledgement

First, thanks are all to **ALLAH** the Most Merciful for supporting me all through my life.

I would like to express my deepest gratitude to **Prof. Dr. Galila Mohamed Mokhtar,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University. I feel highly honored by having the chance to work under her supervision. I had the privilege to benefit from her great knowledge.

I am also very grateful to **Prof. Dr. Lobna Mohamed El Amin Shalaby**, Professor of Pediatric Oncology Head of Pediatric Oncology Department of National Cancer Institute, Faculty of Medicine, Cairo University and, **Prof. Dr. Eman Mounir Sherif**, Professor of Pediatrics. Faculty of Medicine, Ain Shams University, for their close supervision, fruitful advices, and the great effort they have done throughout the whole work

I would also like to thank **Prof. Dr. / Manal Mohamed Abd el Aziz,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University.

My deepest gratitude to **Dr. / Samar Mohamed Farid,**Ass. Professor of Pediatrics, Faculty of Medicine, Ain Shams
University for her great effort with me throughout the whole study.

Contents

List of Abbreviations	i
List of Tables	V
List of Figures	vii
Review of literature	5
* Cancer Development	. 5
* Classification of cancer chemotherapy	44
* Chemotherapy induced toxicity	58
Subject and methods	80
Results	86
Discussion	125
Summary and conclusion	143
Recommendations	148
References	149
Arabic Summary	

List of Abbreviations

5-FU : 5 fluorouracil

ADE : Cytarabine, daunorubicin, etoposide

ADRs : Adverse Drug Reactions

AEL : Acute erythroid leukemia

AIE : Cytarabine, idarubicin, etoposide

ALCL : Anaplastic large cell lymphoma

ALL : Acute lymphocytic leukemia

allo-SCT : Allogeneic stem cell transplantation

ALT : Alanin aminotransferase

AMKL : Acute megakaryocytic leukemia

AML : Acute myelogenous leukemia

AMML : Acute myelomonocytic leukemia

AMoL : Acute monocytic leukemia

APL : Acute promyelocytic leukemia

AST : Aspartate aminotransferase

AVN : Avascular necrosis

BFM : Berlin-Frankfurt-Munster group

BMI : Body mass index

BUN : Blood Urea Nitrogen

CAD : Coronary Artery Disease

CBC : Complete Blood Count

CML : Chronic myelogenous leukemia

List of Abbreviations (Cont.)

CNS : Central Nervous System

CPM : Cyclophosphamide

CRT : Cranial radiotherapy

CT : Computarized Tomography

DLBCL : Diffuse large B-cell lymphoma

DNA : Deoxiribonucleoprotein

EBV : Epstein-Barr virus

ECHO: Echocardiography

EFS : Event-free survival

ER : Endoplasmic reticulum

ESAs : Erythropoiesis stimulating agents

FAB : French-American-British

FISH : Fluoresence in situ hybridization

GCSF : Granulocyte colony stimulating factor

GFR : Glomerular filtration rate

GH : Growth Hormone

GI : Gastrointestinal

GLP-2 : Glucagon-like peptide-2

GnRH : Gonadotropin Releasing Hormone

GvHD : Graft-versus-host disease

GvL : Graft-versus-leukemia

HAM : High-dose cytarabine and mitoxantrone

List of Abbreviations (Cont.)

Hb : Hemoglobin

HD ara-c : High-dose cytosine arabinoside

HF : Heart Failure

HRS : Hodgkin-Reed-Sternberg

HSCT : Hematopoietic stem cell transplants

IFN- α : Interferon α

IL-6 : Interleukin 6

JMML : Juvenile myelomonocytic leukemia

LCLs : Large cell lymphomas

LVEF : Left Ventricular Ejection Fraction

MAbs : Monoclonal antibodies

MI : Myocardial infarction

MPO : Myeloperoxidase

MSC : Mesenchymal stem cells

MTX : Methotrexate

MVC : Micro vessel count

NB : Neuroblastoma

NCI : National Cancer Institute

NE: Neutrophil

NHL : Non Hogkin Lymphoma

NPY : Neuropeptides-Y

NRSTSs : Nonrhabdomyosarcoma soft tissue sarcomas

List of Abbreviations (Cont.)

OS : Overall survival

PCR : Polymerase chain reaction

PLT : Platelet

Rb: Retinoblastoma

RBS : Randam Blood Sugar

RNA : Ribonucleoprotein

ROC : Receiver-operating characteristic

RT : Radiotherapy

SCT : Stem cell transplantation

SMNs : Second malignant neoplasms

SVC : Superior vena cava

TG: Triglyceride

TLC : Total Leucocytic Count

TNF- α : Tumor Necrotic Factor α

TnI : Troponin I

TPO: Thrombopoietin

VBL : Vinblastine

VCR : Vincristine

VEGF : Vascular endothelial growth factor

VRL : Vinorelbine

WBC : White blood cell count

List of tables

No.	Title	Page
1	Signs and Symptoms of Childhood Cancers	9
	and Conditions That Can Mimic These Cancers	
2	Correlation of histopathology,	25
	Immunophenotype, clinical features,	
	cytogenetics and molecular features of	
	childhood Non Hodgkin Lymphoma	
3	Comparison between patients and control as	87
	regards socio-demographic data	
4	Comparison between patients and controls as	87
	regards anthropometric data at presentation	
5	Descriptive data of the patients as regards	88
	clinical data at presentation	0.0
6	Comparison of patients and controls as regard	89
	laboratory data on presentation	0.0
7	Comparison between anthropometric	90
	measurements of the patients at presentation,	
0	during the first and the second follow up	02
8	Comparison between laboratory variables of the	92
	patients at presentation, after first follow up and after second follow up	
9	Correlation between dosage of	105
	chemotherapeutic agents and markers of organ	103
	toxicity during the first follow up	
10	Linear regression model for prediction of	107
	cardiac troponin I level using the dose of	20,
	doxorubicin administered	
11	Correlation between the dosage of	109
	chemotherapeutic agents and biomarkers of	
	organ toxicity during the second follow up.	
12	Correlation between the dosage of	111
	chemotherapeutic agents and biomarkers of	
	organ toxicity during the second follow up.	

List of tables (Cont.)

No.	Title	Page
13	Linear regression model for prediction of GLP-	114
	2 level at the 2nd follow-up using the dose of	
	methotrexate administered	
14	Linear regression model for prediction of GLP-	116
	2 level at the 2nd follow-up using the dose of	
	etoposide administered	
15	Comparison between GLP-2 level in patients	117
	with and those without mucositis during first	
	and second follow-up	
16	Receiver-operating characteristic (ROC) curve	118
	analysis for prediction of the incidence of	
	mucositis at the 1 st and 2 nd follow-up using	
	GLP-2 level	
17	Survival analysis among our patient during our	122
	follow up study	

List of Figures

No.	Title	Page
1	Tumor angiogenesis	6
2	Gingival hyperplasia in a patient with monoblastic leukemia	20
3	Computed tomography scan in a patient with a large, left-sided axillary mass from which a biopsy was obtained. Biopsy findings were consistent with small noncleaved cell non-Hodgkin lymphoma	27
4	CT showing RT sided Wilms tumor	36
5	Gross nephrectomy specimen shows a Wilms tumor pushing the normal renal parenchyma to the side	37
6	CT scan of abdomen in a patient with a retroperitoneal mass arising from the upper pole of the left kidney and elevated urine catecholamines	39
7	Lateral plain radiograph of the knee reveals an osteosarcoma of the distal femur. The lesion is mainly posterior, with disruption and elevation of the periosteum (Codman triangle), and extends beyond the bone into the soft tissue.	41
8	Cell cycle	45
9	Ulcerative oral mucositis lesion on the buccal mucosa.	67
10	The patient shown in the previous image became short of breath after 5 cycles of chemotherapy. This chest radiograph was obtained before he was hospitalized. It shows scattered reticular opacities	71
11	Distribution of the studied patients	86

List of Figures (Cont.)

No.	Title	Page
12	Comparison between anthropometric measures	91
	of the studied patients at presentation, during	
	the first follow up and during the second follow	
	up.	
13	Comparison between CBC finding in patients at	93
	baseline, during the first follow up and during	
	the second follow up	
14	Comparison between levels of ALT, AST	94
	and T. billirubin at baseline, during the first and	
	second follow up	
15	Comparison between levels of creatinine, BUN	95
	and creat.clearence at baseline, after the first	
	follow up and after the second follow up.	
16	Comparison between the levels of RBS, TG and	96
	cholesterol at baseline, during the first follow	
1.7	up and during the second follow up.	0.7
17	Comparison between levels of cardiac troponin	97
	and GLP 2 at baseline, during the first follow	
10	up and during the second follow up	00
18	Changes in the level of ALT during follow up	98
10	in different patients groups. Changes in the level of PLIN during follow up	00
19	Changes in the level of BUN during follow up in different patients groups	99
20	in different patients groups. level of Cholesterol during follow up in	100
20	level of Cholesterol during follow up in different patients groups	100
21	GLP2 level changes in patients groups	101
22	Changes in RBS level in different patients	102
	groups	102
23	changes in triglyceride level in different	103
	patients groups	100
24	changes in cardiac troponin level in different	104
	patients groups	-

List of Figures (Cont.)

No.	Title	Paga
-		Page
25	Scatter plot with linear regression line for	107
	prediction of cardiac troponin I level using the	
26	dose of doxorubicin administered	100
26	Scatter diagram showing the correlation between	108
27	dosage of doxorubicin and cardiac troponin	110
27	Scatter diagram showing the correlation between	110
	dosage of cyclophosphamide and ALT level	
28	Scatter diagram showing the correlation between	112
	dosage of oral methotrexate and RBS level	
29	Scatter diagram showing the correlation between	113
	dosage of IV methotrexate and GLP-2 level	
	during the second follow up	
30	Scatter plot with linear regression line for	114
	prediction of GLP-2 level using the dose of	
	methotrxate administered.	
31	Scatter diagram showing the correlation between	115
	dosage of IV Etoposide and GLP-2 level during	
	the second	
32	Scatter plot with linear regression line for	116
	prediction of GLP-2 level using the dose of	
	etoposide administered	
33	Receiver-operating characteristic (ROC) curve for	119
	prediction of the incidence of mucositis at the 1st	
	follow-up using GLP-2 level	
34	Receiver-operating characteristic (ROC) curve for	120
	prediction of the incidence of mucositis at the 1st	
	follow-up using GLP-2 level	
35	Kaplan-Meier survival curve for the whole study	123
	population.	
36	Comparison between survival rate among patient	124
	with leukemia and those with lymphoma	

Introduction

Chemotherapy is an important primary and adjuvant therapy for cancer patients. The cytotoxicity of antineoplastic agents affects not only tumor cells but also rapidly proliferating normal cells (**Hirotani et al., 2006**).

Severe adverse drug reactions (ADRs) are a major issue for drug therapy because they can cause serious disorders and be life-threatening. Many severe ADRs appear to be idiosyncratic and unpredictable. Genetic factors may underlie susceptibility to severe ADRs, and identification of predisposing genotypes may improve drug therapy by facilitating prescreening of carriers for specific genetic biomarkers (**Tohkin et al., 2010**).

Advances in molecular biology and genetics over the past 60 years have facilitated development of multiple chemotherapeutic agents that are active against most common malignancies. However, significant heterogeneity in the efficacy and toxicity of these agents is consistently observed across human populations. (Miller and Howard 2007).

The spectrum of cardiac side-effects of cancer chemotherapy has expanded with the development of combination, adjuvant and targeted chemotherapies. Their

Introduction and Aim of The Work

administration in multiple regimens has increased greatly. Cardiac toxicity of anthracyclines involves oxidative stress and apoptosis. High doses of the alkylating drugs cyclophosphamide and ifosfamide may result in a reversible heart failure and in life-threatening arrhythmias. Myocardial ischemia induced by the antimetabolites 5-fluorouracil and capecitabine impacts prognosis of patients with prior CAD. Severe arrhythmias may complicate administration of microtubule inhibitors (Monsuez et al., 2010).

Mesenchymal stem cells (MSC) are important cellular component of the bone marrow microenvironment in supporting hemopoiesis. MSCs are resistant to chemotherapy commonly used in hematologic malignancies but are relatively sensitive to anti-microtubule agents. However, the response of MSCs to other chemotherapeutic agents commonly used in solid tumour settings remains unknown (**Li et al., 2010**).

Common complications of chemotherapy thus include stomatitis and enterocolitis. Methotrexate (MTX) is an antimetabolite drug that blocks the production of biologically active forms of folic acid. The major lesions resulting from its cytotoxic effects occur in bone marrow and the intestinal tract (Hirotani et al., 2006).