Role of Matrix Metalloproteinase 9 and Tissue Inhibitor of Metalloproteinase I in Perinatal Asphyxia

Thesis

Submitted for Fulfillment of Ph.D in Childhood Studies

(Child Health and Nutrition)

Medical Studies Department

By

Emadeldin Ezzat Abbas El Daly

M.B.B.Ch/M.Sc Pediatrics

Supervised by

Prof.
Nayera Ismail Attia
Professor of Pediatrics
Institute of Postgraduate

Childhood studies Ain Shams University Prof.
Ashraf Abdel Wahed
Professor of Pediatrics
Faculty of Medicine
Ain Shams University

Prof.

Tahany Ali AlKerdany

Professor of Clinical Pathology Faculty of Medicine Ain Shams University

Ain Shams University

2014

دور مصفوفة ميتالوبروتيناز ٩ والمثبط الخلوي ميتالوبروتيناز ١ في أسفكسيا ما حول الولادة

رسالة مقدمة للحصول على درجة دكتوراه الفلسفة في دراسات الطفولة قسم الدراسات الطبية معهد الدراسات العليا للطفولة (صحة وتغذية الطفل)

مقدمة من

الطبيب/ عماد الدين عزت عباس الدالي

تحت إشراف

أ.د/ أشرف عبد الواحد أستاذ طب الأطفال كلية الطب جامعة عين شمس أ.د/ نيره إسماعيل عطية أستاذ طب الأطفال قسم الدراسات الطبية معهد الدراسات العليا للطفولة جامعة عين شمس

أ.د/ تهائي علي الكردائي أستاذ التحاليل الطبية كلية الطب جامعة عين شمس

> جامعة عين شمس ۲۰۱٤

Acknowledgment

Before all, Thanks to Allah.

I would like to express my profound gratitude to **Doctor/ Nayera Ismail Attia,** Professor of Pediatrics, Institute of Postgraduate Childhood studies, Ain Shams University for her valuable advises and support all through the whole work and for dedicating much of her precious time to accomplish this work.

My special thanks to **Doctor/ Ashraf Abdal Wahed,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University for his continuous encouragement and supervision and kind care.

I am also grateful to **Doctor/ Tahany Ali Alkerdany,** professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her considerable help, in the practical part of this work.

I would like also to thank my family, especially **my Father, and my Mother** for pushing me forward all the time and supporting me through my life from the A, B, C to the M.Sc.

Last but not least, I would like to express my endless gratitude to my dear patients and their parents for their kind cooperation and patience wishing them a good quality of life.

Special thanks for my dear wife for her full support.

Emad El Daly

List of contents

List of contents

Content	Page
List of Abbreviations	Ш
List of Tables	V
List of Figures	VII
Introduction	1
Aim of the Study	5
Review of Literature:	6
 Hypoxic ischemic encephalopathy 	6
 Matrix metalloproteinase 	106
Subjects and Methods	136
Results	146
Discussion	195
Summary	201
Conclusion	203
Recommendations	204
Appendix	205
References	219

List of Abbreviations

AAP	:	American academy of pediatrics
ABG	:	Arterial blood gases
ACOG	:	American college of Obstetrics and Gynecologists
ADH	:	Antidiuretic hormone
aEEG	:	Amplitude-integrated electroencephalography.
AMP/QA	:	amino hydroxy methyl isoxazolepropionic acid
ATP	:	adenosine triphosphate
BBB	:	blood brain barrier
BGT	:	basal ganglia and thalamus
BPD	:	Bronchopulmonary dysplasia
CBF	:	Cerebral blood flow
CBF	:	Cerebral blood flow
CK	:	Creatine Kinase
CLD	:	Chronic lung disease
CNS	:	Central nervous system
CSF	:	Cerebrospinal fluid
ECM	:	Extracellular matrix
EEG	:	Electroencephalography
EPO	:	Erythropoietin
FGF	:	Fibroblast growth factor
FGFR1	:	Fibroblast growth factor receptor 1
FT	:	Fullterm
GMI	:	Monosialogangliosides
GPI	:	Glycosylphosphatidylinositol
H-I	:	Hypoxia-ischemia
HIE	:	Hypoxic ischemic encephalopathy
HIF	:	Hypoxia-inducing factor
HIV	:	Human immunodeficiency disease
HMD	:	Hyaline membrane disease
HT	:	Hemorrhagic transformation
ICH	:	Intracranial hemorrhage
IL1b	:	Interleukin 1 b
IPPV	:	Intermittent positive pressure ventilation

		·
IUGR	:	Intrauterine growth retardation
IVH	:	Intraventricular hemorrhage
LDH	:	Lactate dehydrogenase
MCAO	:	Middle cerebral artery ocllusion
MCP	:	Membrane Cofactor Protein
MCP-3	:	Membrane Cofactor Protein-3
MMPs	:	Matrix Metalloproteinase's
MT-MMPs	:	Membrane-Tight Matrix Metalloproteinase
NAA	:	N-acetylaspartate
NEC	:	Necrotizing enterocolitis
NMDA	:	N-methyle-D-aspartate receptors
NOS	:	Nitric oxide synthase
PET	:	Positron Emission Tomography
PLIC	:	Posterior limb of the internal capsule
PPROM	:	Premature rupture of membrane
PT	:	Preterm
PTD	:	Preterm delivery
PV/TVH	:	Periventricular-intraventricular hemorrhage
PVL	:	Periventricular leukomalacia
RI	:	Resistive index
ROP	:	Retinopathy of prematurity
S&S	:	Sarnat and sarnat staging
SB-3CT	:	The gelatinase-selective compound
SDF-la	:	Sodium dodecyle sulfate-one alfa
SEP	:	Somatosensory evoked potential
SIADH	:	Syndrome of inaproprite antidiuretic hormone
SPECT	:	Single photon emission computed tomography
SPTL	:	Spontaneous preterm labor
SVZ	:	Subventricular zone
Tc99	:	Technetium
TIMPs	:	Tissue inhibitor of metalloproteinase
TNF-a	:	Tumour necrosis factor alfa
WM	:	White matter
•		

List of Tables

No	Title	Page
1	Satnat ant Sarnat stages of HIE	38
2	Fetal heart rate patterns	52
3	mean fetal blood gases	53
4	Apgar evaluation of newborn infants	57
5	Interpretation of Apgar score	58
6	Factors affecting the Apgar scor	59
7	effects of asphyxia in different systems	61
8	most frequent correlation of EEG and topography of neonatal asphyxia	64
9	scoring system for post asphyxia morbidity	100
10	Descriptive clinical data of patients group	146
11	Descriptive clinical data of control group.	147
12	comparison between patient and control group as regard descriptive clinical data	148
13	Descriptive laboratory data of patients group	152
14	Descriptive laboratory data of control group	153
15	Comparison between patient and control group as regard to descriptive laboratory data	154
16	Frequency distribution of presenting clinical signs of patients group	163
17	frequency of risk factors among patients group	165
18	frequency of different stages of HIE according to Sarnat staging	166

19	Cranial ultra-sound findings among patients group	166
20	C.T findings among patients group	167
21	Metalloproteinase-9 levels among patient and control groups	168
22	Tissue inhibitor of metalloprotienase 1 levels among patient and control groups	169
23	Metalloprotienase 9 and tissue inhibitor of metalloprotienase 1 among different stages of HIE (ANOVA).	170
24	comparison between stage I VS II HIE as regard to lab data	173
25	comparison between stage I VS III HIE as regard to lab data	174
26	Comparison between stage II VS stage III as regard to lab data .	175
27	Metalloproienase-9 and Tissue inhibitor of metalloproienase 1 levels among patients with or without seizures	178
28	Metalloproienase9 and Tissue inhibitor of metalloproienase 1 levels among patients with or without cranial U.S. findings	179
29	outcome among patients group	179
30	Correlation between metalloproteinase-9 and tissue inhibitor-1 with clinical data of patients included in the study	181
31	Correlation between metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 and different lab parameters in patients group	182
32	Correlation between metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 with different lab parameters in control group	184
33	Correlation between metalloproteinase-9 and Tissue inhibitor of metaloprotienase-1 with different clinical parameters in control group	187
34	Roc curve of metalloproteinase -9 and tissue inhibator metalloproteinase -1	188

List of Figures

No	Title	Page
1	Major features of carbohydrate and energy metabolism in brain	21
2	major relation between perinatal asphyxia and cerebral blood flow	24
3	Potential biochemical mechanisms of hypoxic ische cerebral injury	30
4	Effect of accumulation of cytosolic Ca and free radicals formation.	31
5	Patterns of Hypoxic-Ischemic Brain Damage.	45
6	EEG in HIE	66
7	Coronal cranial ultrasonographic (US) image of a full-term neonate with hypoxic-ischemic encephalopathy	67
8	Unenhanced head CT scan shows bilateral cortical and subcortical hypoattenuation in the parasagittal watershed regions	69
9	MRI FOR A 6-day-old boy with HIE due to perinatal asphyxia	70
10	Single-0photon emission computed tomography (SPECT)	73
11	Newborn resuscitation Algorithm	79
12	Cooling blanket helping to save babies from brain damage	93
13	Comparison between apgar score 1 min in patients and controls	149
14	Comparison between apgar score 5 min in patients and controls	150
15	comparison between apgar score 10 min in patients and controls	151
16	Comparison between serum creatinine of patients and controls included in the study	155
17	Comparison between ALT of patients and controls	156
18	Comparison between AST of patients and controls	157

19	Comparison between PH of patients and controls	158
20	Comparison between PCO2 of patients and controls	159
21	Comparison between HCO3 of patients and controls	160
22	Comparison between Ca of patients and controls	161
23	Comparison between Hb level in patients and controls	162
24	Distribution of conscoius level of patients included in the study	164
25	Frequency distribution of muscle tone of patients included in the study	165
26	Imaging cranial ultrasonography of patients included in the study	167
27	Metalloproteinase-9 levels among patients and controls groups	168
28	Comparison between tissue inhibitor of metalloproteinase-1 in patients and controls	169
29	Comparison between metalloproteinase-9 in relation to different stages (ANOVA)	171
30	Comparison between tissue inhibitor of metalloproteniase 1 in relation to different stages (ANOVA)	172
31	Comparison between metalloproteniase 9 in relation to different stages of HIE	176
32	Comparison between tissue inhibitor of metalloproteniase 1 in relation to different stages of HIE	177
33	Outcome percentage of patient included the study	180
34	Correlation between metalloproteinase-9 and Tissue inhibitor of metaloprotienase 1 of patients included in the study	186
35	Correlation between metalloproteinase-9 and TLC of patients included in the study	186