

Role of Advanced MRI Techniques in Characterization of Hepatic Nodules in Liver Cirrhosis

Thesis Submitted for partial fulfillment of Doctorate Degree in Radiology

Presented by Noha Mohamed Taha Abdel Hak

M.B., B. Ch., M. Sc Faculty of Medicine Ain Shams University

Supervised by

Prof. Dr. Omar Hussien Omar

Professor of Radiology Faculty of Medicine Ain Shams University

Prof. Dr. Sahar Mohamed El Gaafary

Professor of Radiology Faculty of Medicine Ain Shams University

Prof. Dr. Eman Ahmed Shawky Geneidi

Professor of Radiology Faculty of Medicine Ain Shams University

Prof. Dr. Heba Mohamed Mohamed Abdella

Professor of Tropical medicine Faculty of Medicine Ain Shams University

Dr. Ayman Mohamed Ibrahim

Ass. Professor of Radiology
Faculty of Medicine
Ain Shams University
Faculty of Medicine
Ain Shams University
2017

وقل اعملوا فسيرى الله عملوا عملوا فسيرى الله عملكم ورسوله والمؤمنون

سورة التوبث رقم الأيث ١٠٥

First and foremost, thanks are due to Allah, the most Beneficent and Merciful.

Thanks to **Prof. Dr. Omar Hussien Omar**, Professor of Radiodiagnosis, Faculty of Medicine-Ain Shams University, for giving me the honor to work under his supervision, judicious guidance and kind support at this study.

I am so grateful and most appreciative to the efforts of **Prof. Dr.**Sahar Mohamed El Gaafary, Professor of Radiodiagnosis, Faculty of Medicine-Ain Shams University. No words can express what I owe her for her endless patience and continuous valuable advice, support and continuous encouragement

I wish to express my great thanks to **Prof. Dr. Eman Ahmed Shawki Geneidi**, professor of Radiodiagnosis, Faculty of medicine-Ain Shams

University, for her kind assistance and guidance.

I wish to express my deep gratitude and respect to **Prof Dr. Heba**Mohamed Abdella, professor of Tropical Medicine, Faculty of medicine-Ain

Shams University, for her great guidance during clinical aspect of this study.

My deep appreciation to **Prof Dr. Ayman Mohamed Ibrahim**, Assistant professor of Radiodiagnosis, Faculty of medicine-Ain Shams University, for his sincere guidance and effort during this study.

Special thanks go to **Prof Dr. Dalia Zaki Zidan** professor of Radiodiagnosis, Faculty of medicine-Ain Shams University. No words can express how I'm grateful to her for her generous support and guidance all through the study time.

Many thanks to **Prof Dr. khaled Aboual Fotouh** for his contentious help and support.

I am indebted to great husband, my family, my friends and my colleagues for their endless and continuous help and support.

Noha Mohamed 7aha

List of Contents

Title	Page
• Introduction and aim of the stud	£y 1
• Anatomy	5
• Pathological Considerations A1	nd MRI of Hepatic
Focal Lesions	
• Patients, Methods And Techniqu	ue of MRI Liver85
• Results	99
• Illustrated Cases	
• Discussion	
• Summary and Conclusion	
• References	
Arabic Summary	1

List of Abbreviations		
2D	Two dimentional.	
3D	Three dimensional.	
AASLD	American Association for the Study of Liver Diseases.	
ADC	Apparent diffusion coefficient.	
AFP	Alpha feto-protein.	
AJCC	American Joint Committee on Cancer	
APS	Arterio-portal shunts.	
ART	Arterial.	
BBEPI	Black-blood echoplanar imaging.	
BCLC	Barcelona Clinic Liver Cancer	
СНА	Common hepatic artery.	
CT	Computed tomography.	
DCE-MRI	Dynamic contrast enhanced- magnetic resonance	
DCE-WIKI	imaging	
DEL	Delayed	
DNs	Dysplastic nodules.	
DSC-MRI	Dynamic susceptibility contrast-magnetic resonance	
DSC-WIKI	imaging.	
DW	Diffusion weighted.	
DWI	Diffusion weighted imaging.	
EPI	Echo planner imaging.	
FIESTA	Fast imaging employing steady state acquisition sequence.	
FOV	Field of view.	
FRFSE	Fast recovery fast spin echo.	
FSE	Fast spin echo.	
FSPGR	Fast spoiled gradient.	
Gd-DTPA	Gadolinium-diethylenetriaminepentaacetic acid.	
Gd-EOB-	Gadolinium Gadolinium	
DTPA	ethoxybenzyldiethylenetriaminepentaacetic acid	
GRE	Gradient recalled echo	
HA	Hepatic artery	
HCC	Hepatocellular carcinoma	
HCV	Hepatitis C virus	
ICC	Intra-hepatic cholangiocarcinoma	
IP	In-phase	
IVC	Inferior vena cava	
LI-RADS	Liver Imaging-Reporting And Data System	

List of Abbreviations			
ME	Maximum enhancement		
MIP	Maximum intensity projection.		
MRE	Maximum relative enhancement		
MRI	Magnetic resonance imaging.		
ms	millisecond		
NEX	Number of excitations.		
OP	Out-of-phase.		
PACS	Picture archiving and communication system		
PET	Positron-emission tomography		
PI	Parallel imaging.		
PST	Performance status test		
PV	Portal vein		
RE	Relative enhancement		
RES	Reticuloendothelial system		
RFA	Radio-frequency ablation		
RNs	Regenerative nodules.		
ROI	Regions of interest		
s/mm ²	Second per square millimeter.		
Sat	Saturation.		
SE	Spin echo.		
SI	Signal intensity.		
SNR	Signal to noise ratio.		
SPIO	Superparamagnetic iron oxide.		
SSTSE	Single shot turbo spin echo.		
T	Tesla.		
TACE	Trans-arterial chemoembolization		
TE	Echo Time		
THRIVE	T1-weighted high resolution isotropic volume examination.		
TR	Repetition time		
True-FISP	True fast imaging with steady state precession		
TSE	Turbo spin echo.		
TTP	Time to peak		
US	Ultrasound		
VIBE	Volumetric interpolated breath hold examination.		
WI	Weighted images		

List of Figures

Figure	Title	Page
1	Diagram showing the antero-superior surface of the liver	5
2	Diagram showing the relations of the liver	7
3	Diagram showing gross anatomical lobes of the liver	7
4	Diagram showing hepatic segmentation	8
5	Diagram showing the segmentation of the liver	9
6	Diagram showing dissection to show the relations of the hepatic artery, bile duct and portal vein to each other in the lesser omentum	10
7	Anatomy of celiac artery	11
8	Diagram showing the anatomy of portal vein.	12
9	Normal anatomy of the portal-venous system	12
10	Normal portal venous anatomy	13
11	Coronal MIP image from contrast enhanced MR imaging shows variant anatomy of the portal vein.	13
12	Hepatic blood supply	14
13	Arrangement of the hepatic venous territories	15
14	Anatomy of the biliary system	16
15	Normal anatomy of the hepatic arterial, venous and biliary tract	16
16	Segmental anatomy of the liver according to Couinaud and Bismuth	18
17	Normal hepatic veins	19
18	MR postcontrast segmental anatomy of the liver	19

Figure	Title	Page
19	Axial MIP based on 3D Gd- enhanced delayed phase gradient echo images at various levels shows the hepatic segments	20
20	Coronal reformat shows the relationship among the hepatic segments	21
21	Coronal MR image of the liver	22
22	Sagittal MR images of the liver	22
23	Normal MR Liver signal intensity in axial T1 WI	23
24	Transverse T1 in phase & out of phase WI.	24
25	Normal MR Liver signal intensity in axial T2 WI	24
26	Cirrhosis, morphology of the liver	28
27	Cirrhosis, morphology of the liver, MRI findings from six different patients	29
28	Schematic drawing illustrates typical changes in intranodular hemodynamics during multistep hepatocarcinogenesis	32
29	HCC showing corona enhancement and capsular enhancement	33
30	HCC with and without definite capsular enhancement	35
31	Liver cirrhosis with multiple cirrhotic nodules	37
32	Pathological specimen showing low grade dysplastic nodule	38
33	Siderotic regenerating versus low grade dysplastic nodule	39
34	High grade dysplastic nodule showing intra-lesional fat	40
35	MRI study with a high grade dysplasic nodule or early HCC	41
36	Fat containing HCC	42
37	Signal intensity of HCC in T1 & T2 WIs	43

Figure	Title	Page
38	MRI images showing HCC with diffusion restriction & low ADC value	44
39	MRI showing encapsulated HCC	45
40	MRI showing infiltrative HCC	46
41	MRI with subtraction images showing dysplastic nodule	47
42	MRI showing tumoral PV thrombus	49
43	HCC extending into the IVC	50
44	CT scan showing HCC with atypical enhancement in PV thrombosis	50
45	MRI showing scirrhous HCC	52
46	Schematic drawing of the routes of non-tumorous arterioportal shunts	55
47	MRI showing AP shunts	56
48	MRI showing HCC & AP shunts	57
49	MRI showing focal confluent fibrosis	58
50	MRI showing typical hemangioma	60
51	MRI showing capillary hemangioma	61
52	MRI showing sclerosing hemangioma	62
53	MRI showing simple hepatic cyst	63
54	MRI showing intrahepatic cholangiocarcinoma	65
55	MRI showing colon carcinoma metastasis	67
56	MRI showing peripheral washout sign	68
57	BLCL staging and treatment allocation	72

Figure	Title	Page
58	MRI post RFA showing coagulative necrosis	73
59	MRI post RFA showing well ablated tumor with subtraction images	73
60	CT scan showing patterns of lipidol concentration	74
61	T2 MRI WI showing necrosis post TACE	75
62	MRI showing peri-lesional hyperemia post TACE	76
63	Contrast enhanced MRI showing perfusional abnormality adjacent to ablated region	77
64	MRI post TACE showing residual tumoral tissue	78
65	MRI pre and post RF ablation showing residual tumoral tissue	78
66	CT & MRI post TACE showing residual viable tumoral tissue	80
67	CT, MRI with color map showing residual tumoral tissue post TACE	81
68	MRI post TACE showing residual HCC	82
69	CT scan post RF ablation showing post RF biloma	83
70	CT scan showing post RF abscess	84
71	Diagram showing the perfusion curve	89
72	MRI in phase & out phase WIs	91
73	MRI showing typical MRI imaging protocol sequences	97
74	MRI perfusion of the liver	98
75	Group 1, case 1	124
76	Group II, case 1	128
77	Group II, case 2	132

list of Figures

Figure	Title	Page
78	Group II, case 3	136
79	Group II, case 4	140
80	Group II, case 5	144
81	Group II, case 6	149
82	Group II, case 7	154
83	Group II, case 8	158
84	Group II, case 9	162
85	Group III, case 1	167
86	Group III, case 2	171
87	Group III, case 3	175
88	Group III, case 4	180
89	Group III, case 5	184
90	Schematic approach for hepatic focal lesions	201

List of Tables

Table	Title	Page
1	Imaging Features of Observations by LI-RADS Category	69
2	Group II lesions according to their frequency	101
3	Group III lesions according to their frequency	102
4	Quantitative values in perfusion study regarding the ADC value	120
5	Quantitative values in perfusion study regarding the maximum enhancement	120
6	Quantitative values in perfusion study regarding the maximum relative enhancement	121
7	Quantitative values in perfusion study regarding the time to peak (TTP)	121
8	Quantitative values in perfusion study regarding the wash in rate	122
9	Quantitative values in perfusion study regarding the washout rate	122
10	Quantitative values in perfusion study regarding the necrotic tissues post locoregional therapy	123

Introduction

Liver cirrhosis is characterized by irreversible remodeling of the hepatic architecture with bridging fibrosis and a spectrum of hepatocellular nodules. Cirrhosis-associated hepatocellular nodules result from the localized proliferation of hepatocytes and their supporting stroma in response to liver injury (**Robert et al.**, 2008).

Hepatitis C virus (HCV) is the most important etiologic factor of liver cirrhosis. The burden of liver cirrhosis in Egypt is exceptionally high, owing to it maintaining the highest prevalence of hepatitis C virus worldwide (**Lehman, 2008**).

Cirrhosis is characterized by a spectrum of hepatocellular nodules that mark the progression from regenerative nodules to low- and high-grade dysplastic nodules, followed by small and large hepatocellular carcinomas (Parente et al., 2012).

The differentiation of these lesions is important because regenerative nodules are benign, whereas dysplastic and neoplastic nodules are premalignant and malignant, respectively (Quaia et al., 2013). Early detection of HCC is necessary for more effective planning of management strategies like tumor resection, liver transplantation, tumor ablation and chemoembolization (Digumarthy et al, 2005).

Biopsy of all lesions detected in cirrhotic livers is neither feasible nor advisable. As an alternative, magnetic resonance imaging (MRI) represents an extremely useful method of detection and characterization of regenerating nodules, dysplastic nodules and HCC (Byrnes et al, 2007).

MR imaging is more useful than computed tomography for such assessments because it provides better soft-tissue contrast

and a more nuanced depiction of different tissue properties. Familiarity with the MR imaging characteristics of cirrhosis-associated hepatocellular nodules is therefore important for optimal diagnosis and management of cirrhotic disease (**Robert et al., 2008**).

Triphasic contrast-enhanced MRI produces images of the arterial, porto-venous and delayed phases that not only precisely depict anatomy and contrast medium uptake, but also contain vascular information (**Lee and Choi, 2011**). The addition of T2 WIs findings to dynamic images improves the diagnostic accuracy and sensitivity in the detection of HCC (**Qu et al, 2012**).

DWI has been shown to be a valuable tool in both detection and characterization of focal liver lesions (**Kim et al, 2011**). As the technique is susceptible to changes in cellular structure, it offers the possibility to detect HCC earlier than contrast enhanced techniques, which require sufficient neo-vascularization for contrast-uptake (**Vandecaveye et al, 2007**).

Perfusion magnetic resonance imaging refers to imaging of tissue blood flow, also dynamic contrast enhanced MRI technique with tracer kinetic modeling allows for the quantitative characterization of parenchymal alterations in the liver (**Bachir et al., 2013**).

Destruction of tumor cells is achieved by either percutaneous ablative techniques or transarterial chemoembolization (TACE). Percutaneous ablative techniques are done by chemical substances (ethanol, acetic acid, boiling saline) or by modifying the temperature (radiofrequency, microwave, laser, cryotherapy). TACE means selective hepatic artery obstruction by using usually gelfoam combined with prior