Study of Neutrophil Gelatinase-associated Lipocalin in patients with chronic kidney disease

Thesis

Submitted for fulfillment of the requirement of M.Sc Degree in internal medicine.

Presented by

Moataz Fatthy Mohammed

M.B.B.Ch.

Under supervision of

Dr. Dawlat Belal

Professor of Internal Medicine

Faculty of Medicine

Cairo University

Dr. Seham Bakry

Assistant Professor of Internal Medicine

Faculty of Medicine

Cairo University

Dr. Iman Obaia

Assistant Professor of BioChemistry

Faculty of Medicine

Cairo University

Faculty of Medicine

Cairo University

2009

ACKNOWLEDGEMENT

First and foremost thanks to (ALLAH) who is the most beneficial and most merciful.

It is a great pleasure to express my profound gratitude and deep thanks to **Prof. Dr. Dawlat Belal** Professor of Internal Medicine, Faculty of Medicine, Cairo University for her keen supervision, generous cooperation, great help and encouragement to finish this work.

I am thankful to **Prof. Dr. Seham Bakry** Professor of Internal Medicine, Faculty of Medicine, Cairo University for her great concern and kind supervision.

I wish to express my gratitude to **Dr. Eman Obaia** Assistant professor of Medical Biochemistry, Faculty of Medicine, Cairo University, for her careful supervision, valuable cooperation and encouragement.

My special thanks to my mother for her care, love and generosity that can never be sufficiently acknowledged.

Abstract

Clinical nephrology is discovering neutrophil gelatinase-associated lipocalin (NGAL), a small 25-kDa protein belonging to the lipocalin family, as one of the most promising biomarkers in the diagnostic field of acute kidney injury also suggesting NGAL production from tubular cells may reflect the entity of active renal damage that underlies the chronic impairment condition. In this study, we are aiming to highlight the role of NGAL in assessment the severity of renal impairment. For this reason serum-NGAL and urinary-NGAL was evaluated in a cohort of chronic kidney diseased patients with special consideration to different stages of chronic renal impairment in order to verify the relationship with the severity of renal impairment. Our results showed that in CKD patients' serum-NGAL, urinary-NGAL and the fractional excretion of this protein were notably increased as compared to controls and there was a statistical significant variation with each stage of chronic renal impairment.

Key words:

- Chronic Kidney Disease
- NGAL
- Biomarkers

<u>Contents</u>	
• List of Abbreviations	I
• List of Figures	III
• List of Tables	V
• Introduction and Aim of work	1
Review of literature	3
Chapter I Chronic kidney disease	3
Chapter II NGAL	38
Chapter III NGAL and the Kidney	49
Subjects and Methods	68
• Results	80
• Discussion	96
• Conclusion	106
• Summary	107
Recommendations	110
References	111
Arabic summary	135

List of abbreviations

AAV	Acute kidney injury
ACE	
	Angiotensin convering enzyme
AKI	ANCA associated vasculitis
ARF	Acute renal failure
BMI	Body mass index
CAPD	Continuous ambulatory peritoneal dialysis
C-ANCA	Cytoplasmic pattern antineutrophil cytoplasmic
	antibody
CKD	Chronic kidney disease
CrCl	Creatinine clearance
CRF	Chronic renal failure
CRP	C-reactive protein
DIAS Bp	Diastolic blood pressure
ESR	Erythrocyte sedimentation rate
ESRD	End stage renal disease
F.E	Fractional excretion
GFR	Glomerular filtration rate
GI	Gastrointestinal
HbA1c	Glycated hemoglobin
HBV	hepatitis B virus
HCV	hepatitis C virus
HD	Hemodialysis
HDL	High density lipoprotiens
HIV	Human immunodeficiency virus
HUS	Hemolytic-uremic syndrome
IE	Infective endocarditis
K/DOQI	The Kidney Diseases Outcomes Quality Initiative
LDL	Low density lipoprotien
LIF	Leukemia inhibitory factor
MDRD	Modification of Diet in Renal Disease
MMP9	Matrix metalloproteinase-9
NGAL	Neutrophil gelatinase-associated lipocalin
NHANES	Third National Health and Examination Survey
NSAIDs	Nonsteroidal anti-inflammatory drugs
P-ANCA	Perinuclear pattern antineutrophil cytoplasmic
1-AIICA	antibody

PCI	Percutaneous coronary intervention
PTH	Parathyroid hormone
RBC	Red blood cell
SCr	Serum creatinine
sNGAL	Serum Neutrophil gelatinase-associated lipocalin
SYS Bp	Systolic blood pressure
TG	Triglycerides
TLC	Total leucocytic count
TTP	Thrombotic thrombocytopenic purpura
UCr	Urinary creatinine
uNGAL	Urinary Neutrophil gelatinase-associated lipocalin
USRDS	US Renal Data System
VCUG	Voiding cystourethrogram
WBC	White blood cell

List Of Tables

Table	Subject	Page
No.	,	
Table	Classification of chronic kidney disease	4
(1)	·	
Table	Descriptive statistics of control group	82
(2)		
Table	Descriptive statistics of group (A)	83
(3)		
Table	Descriptive statistics of group (B)	84
(4)		
Table	Descriptive statistics of group (C)	85
(5)		
Table	Comparison of different groups regarding	86
(6)	mean values of NGAL	
Table	Correlation between serum NGAL with GFR	88
(7)	and serum creatinine.	
Table	Correlation between urinary NGAL with	90
(8)	GFR and serum creatinine.	
Table (9)	Correlation between fractional excretion of NGAL with GFR and serum creatinine.	92

List of Figures

Figure No.	Subject	Page
1	Prevalence of ESRD	6
2	Three-dimensional model shows the protein NGAL with the iron-enterochelin complex	39
3	Schematic model of NGAL-mediated iron traffic.	42
4	Schematic of neutrophil gelatinase–associated lipocalin (NGAL) cellular turnover.	51
5	Neutrophil gelatinase—associated lipocalin (NGAL) targets a stromal-epithelial compartment.	53
6	NGAL induces epithelial conversion in rat metanephric mesenchyme.	54
7	Mechanisms for increased urinary neutrophil gelatinase-associated lipocalin (NGAL) levels in proteinuric diseases.	66
8	Comparison between different groups (A, B, C) and controls regarding fractional excretion of NGAL.	87
9	Comparison between different groups regarding serum NGAL	87
10	Comparison between different groups regarding urinary NGAL	88
11	Correlation between serum NGAL and serum creatinine	89
12	correlation between serum NGAL and GFR	89
13	correlation between serum creatinine and GFR	90
14	Correlation between urinary NGAL and GFR	91
15	Correlation between urinary NGAL and serum creatinine	91
16	Correlation between fractional excretion of NGAL and serum creatinine	92
17	correlation between fractional excretion of NGAL and GFR	93

Figure No.	Subject	Page
18	ROC curve	94

Introduction

Clinical nephrology is discovering neutrophil gelatinase-associated lipocalin (NGAL), a small 25-kDa protein belonging to the lipocalin family, as one of the most promising biomarkers in the diagnostic field of (AKI) acute kidney injury (Bolignano D et al., 2008)

This protein, initially found in activated neutrophils as an innate anti-bacterial factor, is released massively from kidney tubular cells after harmful experimental stimulations of various natures, activating specific iron-dependent pathways with the self-defensive intent to contrast oxidative stress and cellular apoptosis. (Mori K et al., 2007).

In patients undergoing treatments potentially detrimental to the kidney, such as contrast medium administration and cardiac surgery (Hirsch R et al., 2007) (Mishra J et al., 2005), as well as in subjects with unstable nephropathies (Trachtman H et al., 2006), the increase in NGAL levels is a good predictor of a brief-term onset of AKI, notably anticipating the resulting increase in serum creatinine levels and thus enabling the arrangement of preventive therapeutic measures in a timely manner. In parallel, recent studies have also reported altered NGAL levels in patients affected by some chronic kidney disease (CKD) associated conditions, such as autoimmune (Brunner HI et al., 2006), polycystic (Bolignano D et al., 2007) and proteinuric diseases, (Ding H et al., 2007) (Bolignano D et al., 2008), suggesting the possibility that under these circumstances NGAL production from tubular cells may reflect the entity of active renal damage that underlies the chronic impairment condition (Mori K et al., 2007).

Aim of work

In this research, we are hoping to find out a way to follow up those patients with chronic kidney disease in different nephrology clinics so as to prevent the development of end-stage renal disease and possibilities of dialysis and kidney transplantation with their complications. Regarding cost-effectiveness, world governments spend annually billions of dollars in renal replacement therapy that can be saved by encouraging studies dealing with management of pre-dialysis patients.

In this study, we are aiming to highlight the role of NGAL in assessment the severity of renal impairment.

For this reason serum-NGAL and urinary-NGAL was evaluated in a cohort of chronic kidney diseased patients with special consideration to different stages of chronic renal impairement. From this point of view, fractional execretion of NGAL may thus represent the expression of how much active kidney damage lies beneath the overall condition of chronic renal impairment, rather than being a simple marker of decreased filtration such as serum creatinine. Also, we might understand the pathophysiological role of this protein in tubular adaptation to renal damage.

CHAPTER I

Chronic Kidney Disease

Introduction

The Kidney Diseases Outcomes Quality Initiative (K/DOQI) of the National Kidney Foundation (NKF) defines chronic kidney disease (CKD) as either kidney damage or a decreased kidney glomerular filtration rate (GFR) of < 60 mL/min/1.73 m² for 3 or more months. Whatever the underlying etiology, the destruction of renal mass with irreversible sclerosis and loss of nephrons leas to progressive decline in GFR.

The K/DOQI definition and the classification of CKD allow better communication and intervention at the different stages. (K/DOQI clinical practice guidelines for chronic kidney diease 2002) (Coresh J et al., 2003) (Coresh J et al., 2005).

The different stage of CKD forms a continuum in time; prior to February 2002, no uniform classification of the stages of CKD existed. At that time, K/DOQI published a classification of the stages of CKD, as shown in the following table (1):

CLASSIFICATION OF CHRONIC KIDNEY DISEASE

Table (1):

Chronic	Kidney Disease: A C	Clinical Action Plan		
Stage	Description	GFR (mL/min/1.73m ²)	Action*	
	At increased risk	≥90 (with CKD risk factors)	Screening CKD reduction	risk
1.	Kidney damage with normal or † GFR		treatment Treatment comorbid conditions, slowing progression,	and of risk
2.	Kidney damage with mild ↓ GFR	60-89	Estimating progression	
3.	Moderate ↓ GFR	30-59	Evaluating treating complications	and
4.	Severe ↓ GFR	15-29	Preparation kidney replacement therapy	for
5.	Kidney Failure	<15 (or dialysis)	Replacement uremia present)	(if

Epidemiology

The attention being paid globally to chronic kidney disease is attributable to five factors: the rapid increase in its prevalence, the enormous cost of treatment, recent data indicating that overt disease is the tip of an iceberg

of covert disease, an appreciation of its major role in increasing the risk of cardiovascular disease, and the discovery of effective measures to prevent its progression. These factors render chronic kidney disease an important focus of health care planning even in the developed world, but the problems they delineate in the developing world are far more challenging. Some 85 percent of the world's population lives in low-income or middle-income countries, where the clinical, epidemiologic, and socioeconomic effects of the disease are expected to be the greatest.

Data from the United States suggest that for every patient with end-stage renal disease (ESRD), there are more than 200 with overt chronic kidney disease (stage 3 or 4) and almost 5000 with covert disease (stage 1 or 2). Unfortunately, this type of information is lacking for most other countries, so international comparisons must be based on ESRD, rather than chronic kidney disease.

The prevalence of ESRD is influenced by both the number of new patients requiring renal-replacement therapy (incidence) and the number of deaths. Incidence typically reflects the interaction of genetic and environmental factors, as well as the efficacy of primary health care services. Mortality, for its part, is directly related to the technical and organizational competence of programs offering renal-replacement therapy. With the improvement of such therapy, the known prevalence of ESRD continues to increase in most countries: it is currently higher than 2000 per million population in Japan, about 1500 per million population in the United States, and about 800 per million population in the European Union. In developing countries the figures vary, from less than 100 per million populations in sub-Saharan Africa and India to about 400 per million populations in Latin America and more than 600 per million populations in

Saudi Arabia, despite similar rates of incidence in these countries and regions. Thus, prevalence is largely a matter of survival made possible by renal-replacement therapy, which, in turn, is dependent on health care expenditures and economic strength. Figure (1)

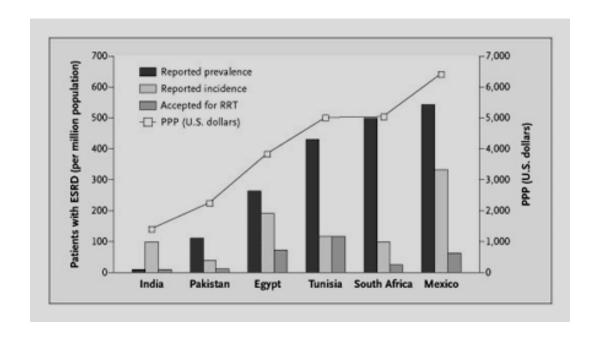


Figure (1) prevalence of ESRD

Although the credibility of statistics from many developing countries may be questionable, the majority of experts agree that 150 per million populations is the average incidence of ESRD. (Barsoum RS 2002)

Surprisingly, this figure is lower than those reported in the developed world: in the United States, for example, the incidence is about 330 per million populations. The difference reflects genetic and environmental factors: the role of ethnic origin is evident in the fact that the incidence is much higher among blacks and Hispanics in the United States than among their white counterparts, and the effect of environment is reflected by an