Bacteriological and molecular study on *Salmonella* isolated from human and animal in Egypt and Algeria

Thesis submitted for the degree of Ph.D in science (Microbiology)

By

ABDELHAKIM AOUF

B. Sc., M.Sc. Microbiology

Supervisors

Dr. Mohamed Ramadan Abu Shady	Dr. Mohamed Sayed Salama
Professor of microbiology	Professor of Molecular biology
Faculty of Science	Faculty of Science
Ain Shams University	Ain Shams University

Dr. Rabah Bakour	Dr. Hala Mohamed Abu Shady
Professor of Genetic	Assistant Professor of microbiology
Faculty of Science	Faculty of Science
USTHB Algeria	Ain Shams University

Faculty of science Ain Shams University Microbiology Department

2007

Approval Sheet

Title	of	thesis:

Bacteriological and molecular study on *Salmonella* isolated from human and animal in Egypt and Algeria.

Degree: Ph. D in Medical and Molecular Microbiology.

Name of student: ABDELHAKIM AOUF

(1)

(2)

(3)

Date: / / 2007

Dedications

I dedicate this modest work * * * * * * To my father * * * * * * * * * * * To my mother * * * * * * * *To the spirit of my Brother * * * * * * * * * To my whole family * * * * * * * * * * *To the spirit of my advisor * * * * * * * * * * * To Egypt * * * * * & To all whom helped me during the realization

of this work

Acknowledgment

At first my deepest gratitude goes to Allah the Almighty, for his blessing, help and conciliation.

I would like to express my deep gratitude and appreciation to my advisors:

- The spirit of <u>Pr. Mohamed Ramadan Abushady</u>, who reinforced my confidence in my self, and gave me a freedom to develop my own ideas.
- <u>-Pr. Mohamed Sayed Salama</u> for his continuos support, guidance, facilities and valuable help and advices
- <u>-Pr. Rabah Bakour</u> for its support, facilities, always willing to answer questions and make sure that my project was going in the right.
- -Dr. Hala Ramadan Abushady, for here continuous encouragement and help from the beginning to the end of this thesis.

I am grateful to the assistance I received from the always helpful staff of Veterinary faculty Cairo-University, Staff of Genetic lab USTHB.

Special Thanks go to Dr. Mirvat Djaber (Kasr Alainy Hospital) Dr. Issam Hatem, Messai Yamina, Iabaden Hassan, Allwache Souhila, farida Boufrouche, Dr. Tazir (Mustapha Bacha Hospital -Algiers), Mohamed Ali (Microbiology Lab). Institute Pasteur Staff (Algiers). Dr Issam Hassan (Vac-Sera), Staff of Microbiology lab (DRC). Staff of Microbiology Lab (Department of Microbiology-Ain Shams University)

My great thanks go to any one helped me even by sweet word. Sweet words are easy to say but sweet people that I have been known during my work are difficult to find.

Thanks to Allah who brought me to where I am today.

Contents

Page
Abstract
Introduction1
Literature Review5
1- General characteristics of Salmonella5
1.2. Discription of the genus Salmonella
1.3. Taxonomy of the genus Salmonella
1.4. Habitat
1.5. Isolation of Salmonella
2- Salmonellosis in human
3- Salmonellosis in poultry14
4- Resistance to antibiotics
4.1. Resistance to β-Lactams18
444.01
4.1.1. β-lactamases20
4.2. Resistance to Aminoglycosides22
4.3. Quinolones and Fluoroquinolones23
4.4. Tetracycline
4.5. Phenicols
4.6. Sulfonamides and Trimethoprim26
2 0
5. Placemid about attained in 20
5. Plasmid characterization28
6. Gene transfer30
7. Conjugation
8. Polymerase Chain Reaction32
9. Sequencing34
Materials and methods 37

Materials37
1. Isolation and identification37
- Media and chemicals
- Media preparation.
- Standard strain
2. Susceptibility testing37
-Media and Chemicals
-Standard strain
3. β-lactamases detection37
-Media and chemicals
-Solutions
4. Plasmid extraction38
-Media and chemicals
- Solutions
-Media preparation
-Reference plasmids
5. Electrophoresis39
- Media and chemicals
- Solutions
- Markers
6. Gene transfer40
- Media and chemicals
- Recipient strain
7. Whole DNA extraction40
- Media and chemicals
Methods41
1.Bacterial strains41
2. Antibiogram

2.3. MTC44
2.4. Detection of β-lactamases 45
2.5. Detection of ESBLs46
2.6. Coexistence of β-lactamases47
2.7. DNA extraction47
-Isolation of plasmid DNA
-Electrophoresis
-Isolation of genomic DNA
-Determination of concentration
and purity of DNA.
2.8. Gene transfer by conjugation50
2.9. Polymerase Chain Reaction51
2.8. Sequencing54
Results55
1- Isolation and identification of Salmonella55
2- Phenotypic Characterization of resistance58
2-1. Antibiogram58
2-1-1: Antibiotic resistance patterns of human Salmonella spp isolated from different clinical sources in Egypt
2-1-2: Antibiotic resistance patterns of Salmonella spp isolated from poultry in Egypt. 2-1-3. Antibiotic resistance patterns of human Salmonella spp isolated from different clinical sources in Algeria.
2-1-4. Antibiotic resistance patterns of <i>Salmonella spp</i> isolated from poultry in Algeria
2-2 Detection of β-lactamases by iodometric method75 2-3- Minimal inhibitory concentration

List of figures

1.	Transmission cycle of Salmonella 11
2.	The passage of Salmonella through the body13
3.	β-lactams, Structure of the basic nucleus 19
4.	Enzymatic inactivation of β -lactams
5.	Resistance plasmids
6.	Polymerase chain reaction33
7.	Sanger ddNTPs chain termination36
8.	Percentage of resistance to antibiotics of
	Salmonella spp isolated from human in
	Egypt61
9.	Percentage of resistance to antibiotics of
	Salmonella spp isolated from poultry in
	Egypt
10.	. Percentage of resistance to antibiotics of
	Salmonella spp isolated from human in
	Algeria 69

11. Percentage of resistance to antibiotics of	
Salmonella spp isolated from poultry in	
Algeria	72
12. Sequencing of PCR product generated	from
isolate 3 isolated from human in Egypt	108
13. Sequencing of PCR product generated from	n
isolate 48 isolated from human in Algeria	111

List of Photographs

1.	Analysis of PCR amplification products of the invA
	gene from Salmonella spp isolates57
2.	Detection of β -lactamases using iodometric
	method
3.	Detection of ESBL production by double disc
	test
4.	Detection of ESBL production by double disc test,
	(Salmonella 13) 81
5.	Image of synergy
6.	Detection of cephalosporinase production84
7.	Detection of cephalosporinase production in
	absence
8.	Plasmid profiles of selected Salmonella. spp isolates
	(23 isolates) 87 .
9.	Plasmid profiles of selected Salmonella. spp isolates
	12 isolates (human)
10	. Plasmid profiles of selected Salmonella spp isolates.
	12 isolates (poultry)

11. Agarose gel electrophoresis of the plasmid profile of
representative Salmonella spp isolated from human
in Egypt with ESBL phenotype and their
transconjugants95
12. Agarose gel electrophoresis of the plasmid profile of
representative Salmonella isolated from human in
Egypt and their transconjugants96
13. Agarose gel electrophoresis of the plasmid profile of
representative Salmonella spp (48) isolated from
human in Algeria and its transconjugant94
14. Analysis of PCR amplification products of the Bla
TEM gene from Salmonella isolates (ESBL
Phenotype) isolated from human patients in
Egypt
15. Analysis of PCR amplification products of the Bla
TEM gene from Salmonella isolates (ESBL
Phenotype) isolated from human patients in
Egypt101

16. Analysis of PCR amplification products of the Bl
TEM gene from Salmonella isolates (Penicillinas
high level phenotype)102
17. Analysis of PCR amplification products of the CTX
M gene from Salmonella isolates isolated from
human in Egypt103
18. Analysis of PCR amplification products of the Amp
C gene from Salmonella isolates isolated from
human in Egypt104

List of tables

1.	Distribution of isolates according source and area
	of isolation 55
2.	Results of antibiotic susceptibility of Salmonella
	spp isolated from human in Egypt59
3.	Results of antibiotic susceptibility of Salmonella
	spp isolated from poultry in Egypt62
4.	Percentage of resistance to antibiotics of
	Salmonella spp isolated from human in
	Algeria66
5.	Percentage of resistance to antibiotics of
	Salmonella spp isolated from poultry in
	Algeria 69
6.	Antibiotic resistance patterns of human
	Salmonella spp isolated in Egypt72.
7.	Antibiotic resistance patterns of poultry
	Salmonella spp isolated in Egypt73
8.	Antibiotic resistance patterns of human
	Salmonella spp isolated in Algeria74