

Faculty of Science Entomology Department

Application of Remote Sensing technology in detecting the ecological distribution of the house fly, *Musca domestica* L. with respect to trachoma disease infection in El-Fayoum Governorate, Egypt

A thesis submitted to the Department of Entomology, Faculty of Science, Ain Shams University for the award of the Ph.D. Degree

BY

Sara Ahmad Al-Sayed Al-Ashaal (M.Sc. in Entomology)

Supervisors

Prof. Dr. Magda Hassan Abdul Al-Aziz Rady

Professor of Microbiology and Molecular biology, Entomology Department, Faculty of Science,
Ain Shams University

Prof. Dr. Mohammad Sayed Salama

Professor of Genetic Engineering, Entomology Department, Faculty of Science, Ain Shams
University

Dr. Dalia Mohammed Mahmoud

Assistant professor of Entomology, Entomology Department, Faculty of Science, Ain Shams University

Dr. Shireen Ahmad Ma'moun

Lecturer of Entomology, Entomology Department, Faculty of Science, Ain Shams University

Dr. Mona Sayed Ahmed Yones

Researcher, National Authority for Remote Sensing and Space Science

2017

ABSTRACT

Our study aimed to alert our society about the role played by *Musca domestica* L. in carrying and transmitting *Chlamydia trachomatis*, the causative organism of trachoma disease in Egypt.

Measuring of different environmental variables were derived from RapidEye and Landsat8 satellites imageries included Land Use Land Cover (LULC) and Land Surface Temperature (LST). Application of (RS) and (GIS) may help the decision makers to take a decision about control program for fly borne diseases at right place, time and in right direction. House fly population densities were estimated in fifteen villages representing five administrative centers in Al-Fayoum Governorate and ten sites at Mansheit El- Gammal village.

The correlation between some parameters as agriculture, fishing, water supply, garbage management, health activity, community network and education with fly densities and prevalence of *C. trachomatis* was measured.

The highest fly density in Mansheit El- Gammal village was 42.6 ± 9.29 fly/trap while the lowest density was recorded as 6.6 ± 2.08 fly/trap from Terssa village. Wastes as breeding sites for house fly were sorted according to its type and content to four different types, household, slaughterhouse, agriculture and general waste type. *C. trachomatis* was isolated for the first time in Egypt as twelve isolates from eleven villages at Al-Fayoum Governorate. The molecular studies including PCR method for amplification of MOMP 1 gene region of *C. trachomatis* and this gene proved to be positive within eleven villages.

Keywords: Trachoma - *Musca domestica* - remote sensing - geographic information system - MOMP 1

ACKNOWLEDGEMENT

اللهم لك الحمد حمداً طيباً مباركاً فيه كما ينبغي لجلال وجهك وعظيم سلطانك

I would never have been able to finish my dissertation without the guidance of my committee members, help from friends, and support from my family.

I am very much indebted to my principal supervisor *Prof. Dr. Magda Hassan Abdul Al-Aziz Rady*, Professor of Micro and Molecular biology, Faculty of Science, Ain Shams University, for accepting to be my supervisor in this thesis and for continuous support of my thesis, for her patience, motivation, enthusiasm and immense knowledge. Her guidance helped me in all the time of this thesis. I could not have imagined having a better advisor and mentor for my thesis. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. I deeply express my appreciation and thanks to her and I will always still grateful.

My deep appreciation to *Prof. Dr. Mohammed Sayed Salama*, Professor of Genetic Engineering, Faculty of Science, Ain Shams University for his sincere encouragement and for providing all possible laboratory facilities to accomplish the practical part of this study.

Also, my deepest thanks should extend to *Dr. Dalia Mohammed*, Assistant Professor of Entomology, Faculty of Science, Ain Shams University for her efforts and encouragement.

Special thanks to *Dr. Shireen Ma'moun*, Lecturer of Entomology, Faculty of Science, Ain Shams University for her advice and help.

It is a great pleasure to express my gratitude to *Dr*. *Mona Yones*, Researcher, National Authority for Remote Sensing and Space Science for his great efforts, advice and encouragement. I deeply express my appreciation and thanks to her and I will always still grateful.

I would like to express my deep gratitude and respect to *Dr. Nasser Saleh*, at National Authority for Remote Sensing and Space Science providing important literatures, valuable discussion and important advices to me.

Special thanks to *Dr. Mohammed El-Shirbeny*, Researcher, National Authority for Remote Sensing and Space Science for his help and advice.

Big thanks to *Dr. Khaled Abu Taleb*, Researcher, National Authority for Remote Sensing and Space Science for providing literatures, valuable discussion and help.

Thanks are also to *Prof. Dr. Ragaa Hammad*, the head of Entomology Department, Faculty of Science, Ain Shams University. I have appreciated the staff members of Ain Shams University Collection (ASUC) and other colleagues in Entomology Department, Ain Shams University for various help throughout this study.

I gratefully acknowledge the staff members of Entomology Department, Faculty of Science and National Authority for Remote Sensing and Space Science.

Last, but by no means least, I would like to thank my family: my parents for giving birth to me at the first place and supporting me spiritually throughout my life and also for always believing in me, for their continuous love and their support in my decisions. Without whom I could not have made it here. I would like to thank also my two brothers for my loving, encouraging and continuously supporting me throughout my life and leaving me free in all my decisions.

LIST OF ABBREVIATIONS

Вр	Base pair.
DNA	Deoxyribonucleic Acid.
O.D.	Optical density.
OTUs	Operational Taxonomic Units.
PCR	Polymerase Chain Reaction.
TAE buffer	Tris acetate-EDTA buffer.
TE buffer	Tris EDTA buffer.
EDTA	Ethylenediaminetetraacetic Acid.
Kb	Kilobase.
Hcl	Hydrochloric acid.
cm	Centimeter.
0	Centigrade.
gm	Grame.
CTAB	Cetyltrimethylammonium Bromide
Mg	Milli-grames.
Mm	Milli-meter.
r.p.m.	Revolutions per minutes.
RNAse	Ribonuclease.
DNAse	Deoxyribonuclease
μg	Microgram.
pm.	pico-mole.
L	Liter.

M	Molar.
mM	Milli Molar.
mol.	mole.
mmol.	millimole.
min.	Minute.
ml	milliliters.
MI	Micro-liters.
NaCl	Sodium Chloride.
Ng	Nano-Grames.
Nm	Nanometers.
Taq. Polymerase	Thermus aquaticus polymerase.
U	Unit.
U.V. Violet	Ultra Violet.
V	Volt.
MOMP	Major Outer Membrane Protein.
GPS	Global Positioning System.
RS	Remote Sensing.
GIS	Geographic Information System.
FAO	Food and Agriculture Organization.
LCCS	Land Cover Classification System.
UNEP	United Nations Environment
	Programme.

ANTIDD	Advanced Very High Deschution
AVHRR	Advanced Very High Resolution
	Radiometer.
NOAA	National Oceanic and Atmospheric
	Administration
USGS	United States Geological Survey
NDWI	Normalized Difference Water Index
MODIS	Moderate Resolution Imaging
	Spectroradiometer
Rad	Pixel radiance unit
DN	Pixel digital number
To	Radiance temperature
K1 and K2	Thermal band constants
E _o	Surface Emissivity
NDVI	Normalized Difference Vegetation
	Index
LST	Land Surface Temperature
B _{NIR}	Near Infrared Band
B _{red}	Red Band
SD	Standard Deviation
LSD	Least Significant Difference
HFN	Hyper Frame Number
SWIR	Short Wave Infrared
OLS	Ordinary Least Squares

TOA	Top-Of-Atmosphere
OLI	Operational Land Imager
TIRS	Thermal Infrared
Pan	Panchromatic
ERDAS	Earth Resources Data Analysis Systems
SPSS	Statistical Package for the Social Sciences
MDSSM	Musca Density Site Selection Model
MDA	MacDonald, Dettwiler and Associates
SSTL	Surrey Satellite Technology Ltd
SCC	Spacecraft Control Center
AIT	Assembly, Integration and Test
JOP	Jena Optronik
RGB	Red-Green-Blue region
NASA	National Aeronautics and Space Administration
PCA	Principle Component Analysis

LIST OF FIGURES

Materials and Methods	Pages
Figure (1): Map of Al- Fayoum Governorate and	49
Mansheit El- Gammal Village, Egypt.	
Figure (2): Map of Al- Fayoum Governorate	50
showing flies sampling sites.	
Figure (3): Primary and Secondary Sample Based on	50
WHO and study visit of Markaz Tamiaa.	
Figure (4): Landsat8 data acquired on 14 th of Feb. 2015.	57
Figure (5): Landsat8 data acquired on 12 th of Oct. 2015.	58
Figure (6): ENVI program for calculating radiance,	60
emissivity and land surface temperature.	
Figure (7): Model export graphic	74
Figure (8): NDVI export graphic	74
Figure (9): NDWI export graphic	75
Figure (10): Tasseled cap export graphic	76
Figure (11): Tasseled cap and NDWI export graphic	77
Figure (12): Tasseled cap, NDVI and NDWI export	78

☐ LIST OF FIGURES ☐

graphic	
Figure (13): Model graphic	79
Figure (14): Sticky trap	94
Figure (15): House fly on the face of children	95
Figure (16): Two sticky traps on the garbage area	95
Results	
Figure (17): Land cover map of the study area.	105
Figure (18): M. domestica abundance in relation to	111
different sites in Al- Fayoum Governorate.	
Figure (19): The impact of household wastes on	115
house fly densities.	
Figure (20): The impact of slaughtering wastes on	117
house fly densities.	
Figure (21): The impact of agricultural wastes on	119
house fly densities.	
Figure (22): The impact of general wastes on house	121
fly densities.	
Figure (23): Types of waste with respect to house fly	123
densities.	
Figure (24): The relation between M. domestica	127
density and the land surface temperature at Al-	
Fayoum Governorate.	
Figure (25): Incidence of C. trachomatis isolated	129

☐ LIST OF FIGURES ☐

from house flies (Household wastes).	
Figure (26): Incidence of C. trachomatis isolated	131
from house flies (Slaughtering wastes).	
Figure (27): Incidence of C. trachomatis isolated	133
from house flies (Agricultural wastes).	
Figure (28): Incidence of C. trachomatis isolated	135
from house flies (General wastes).	
Figure (29): Percentage of <i>C. trachomatis</i> according	137
to different types of wastes.	
Figure (30): Incidence of <i>C. trachomatis</i> from house	139
fly collected from the face of children.	
Figure (31): Amplicon generated by amplification of	166
MOMP gene of C. trachomatis (144 bp) from flies	
associated with household wastes.	
Figure (32): Amplicon generated by amplification of	167
MOMP gene of <i>C. trachomatis</i> (144 bp) from flies	
associated with slaughtering wastes.	
Figure (33): Amplicon generated by amplification of	168
MOMP gene of C. trachomatis (144 bp) from flies	
associated with agricultural type.	
Figure (34): Amplicon generated by amplification of	169
MOMP gene of C. trachomatis (144 bp) from flies	
associated with general type.	

Figure (35): Amplicon generated by amplification of	170
MOMP gene of <i>C. trachomatis</i> (144 bp) from house	
fly collected from the face of children at Al- Fayoum	
Governorate.	
Figure (36): GPS point sample distribution of	171
Mansheit El- Gammal village.	
Figure (37): Land Use Map of Mansheit El- Gammal	172
village.	
Figure (38): M. domestica abundance collected from	174
different ten Ezba in Manshyeit El- Gammal, Al-	
Fayoum Governorate.	
Figure (39): Incidence of <i>C. trachomatis</i> from house	178
fly collected from the face of children at Mansheit	
El- Gammal village.	
Figure (40): The relation between M. domestica	181
density and LST at Mansheit El- Gammal village.	
Figure (41): Amplicon generated by amplification of	182
MOMP gene of <i>C. trachomatis</i> (144 bp) from house	
flies at Mansheit El- Gammal village (ten Ezba).	
Figure (42): Amplicon generated by amplification of	183
MOMP gene of C. trachomatis (144 bp) from eye	
seeking flies at Mansheit El- Gammal village.	

Figure (43): Amplicon generated by amplification of	184
MOMP gene of <i>C. trachomatis</i> (144 bp) from house	
fly collected from the face of children at Mansheit	
El- Gammal village.	

LIST OF TABLES

Materials and Methods	Pages
Table (1): Specifications of Rapid eye satellite	54
sensor.	
Table (2): Bands of Landsat 8 satellite sensor	56
Table (3): Dichotomous approach to build primary	64
classes in FAO / LCCS.	
Table (4): Location of flies' samples that collected	80
in 2014 Al- Fayoum Governorate based on	
systematic sampling	
Table (5): Villages and sites visited during the study	88
and fly collections within Al- Fayoum Governorate.	
Table (6): Flies samples that collected in 2015 of	89
Mansheit Al- Gammal village, Al- Fayoum	
Governorate based on systematic sampling.	
Table (7): Primers used to amplify a specific gene	101
the major outer membrane protein (MOMP 1).	
Table (8): The optimum components used for PCR	103
reaction.	
Results	
Table (9): The area of different land covers in the	104
study area.	
Table (10): Estimation of fly populations collected	109