

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من ٢٥-١٥ مئوية ورطوبة نسبية من ٢٠-١٠ في درجة حرارة من ٢٥-١٥ مئوية ورطوبة نسبية من ٢٠-١٤. To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

617,96

Reduction of Occurrance of Hypotension During Spinal Anaesthesia for Caesarean Section: Prophylactic Intramuscular Ephedrine Versus Fluid Preload

Thesis
Submitted for Partial fulfillment
of the master degree in anesthesia

By

Amina Ahmed Mohamed

Resident doctor at Anesthesiology Dept.
Assiut University Hospital

Supervised by

Prof. Dr. Fatma Gad El-Rab El-Said Askar

Prof. of Anesthesiology and intensive care Faculty of Medicine - Assiut University

Dr. Haney Ahmed Ebrahim El-Morabaa

Assistant Prof. of Anesthesiology and intensive care Faculty of Medicine - Assiut University

Dr. Ayman Mohamed Shamash

Assistant Prof. of Gynecology and Obstetric Faculty of Medicine - Assiut University

YMYO

P

Amina A. Mohamed

noisagisisrad Infqləd

Finally my thanks extends to all colleagues in both Anesdia and Gan topolosia for their singlessia and Ganglessia singlessia singlessi singlessia singlessia singlessia singlessia singlessia singless

I express my immense gratitude and appreciation to Dr. Ayman Shamash assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Assint University, for bis advice, eminent supervision which tided me over the difficulties.

ะบรอนรซิยมเลย

I met with throughout this mork, and also grateful thankful to Dr. Haney El-Morabaa, assistant professor of Anesthesiology and Intensive Care, Faculty of Medicine, Assint University, for his valuable help, continuous guidance precious instructions and

I monlò like to express my deep thanks and sinceve gratitude to Prof. Dr. Fatma Gad El-Rab, professor of Anesthesia and Intensive cave, Faculty of Medicine, Assint University, for suggesting the subject of thesis, continuous supervision, fruitful discussion and the benefit of this experience and knowledge.

First and above all thanks to Allah, the source of all knowledge and wisdom, who enabled me to complete this work.

zuəruəbpəzmoruzızz

Contents

List of abbreviations		ii
List of tables		iii
List of figures		iv
Introduction and Aim of the	work	
Review of Literature		
Body fluids		 3
Physiological changes associated with	pregnancy	10
Methods used to evaluate newborn condition		16
Placental transfer of drugs		26
Uteroplacental blood flow		32
Ephedrine		35
Bupivacaine		
Anesthesia for casarean section		38 49
Patients and Methods		
Results		,
Discussion Summary and Conclusion	1 .**	
References		90
Arabic Summary		99

List of abbreviations

ATP Adenosine triphosphate

Na+ Sodium ions
K+ Potassium ions
Cop Cardiac output

COP Colloid Osmotic Pressure

UV/m Umblical vein/ maternal plasma concentrations ration.

CSF Cerebrospinal Fluid

ANP Atrial Natriuretic Peptide

CSE Combined Spinal Epidural anesthesia

CNS Central Nervous System

HR Heart Rate

SBP Systolic Blood Pressure
DBP Diastolic Blood Pressure
MBP Mean Blood Pressure
C.S Caesearn Section
ID Incision Delivery Time

UD Uterine Incision Delivery Time

Po₂ Oxygen Tension

Pco₂ Carbon Dioxide Tension

 O_2 saturation Oxygen Saturation α Alpha- Adrenoceptor Beta- Adrenoceptor

NACS Neurologic and Adaptive Capacity Scoring System

List of Tables

Table No.	Title	Page
1	Central hemodynamic changes in 10 normal nulliparous women between 35 and 38 weeks Gestation and again when 11 to 13	11
	weeks postpartum.	
2 3	Apgar scoring system	16
3	Umblical cord blood pH and blood gas values in normal term	
	newborns.	18
4	Umblical arterial blood pH related to neonatal morbidity, mortality	
	and Apgar scores in term infants.	19
5	Abnormalities in fetal pH and degree of fetal acidosis.	20
6	Maternal clinical data	63
7	Intraoperative data	64
8	Changes in systolic blood pressure	66
9	Changes in diastolic blood pressure	69
10	Changes in mean blood pressure	72
11	Incidence of hypotension at different time intervals	74
12	Incidence of hypotension, total number of patients	75
13	Changes in heart rate	76
14	Haematocrite value of the mothers	78
15	Maternal side effects	79
16	Neonatal status and blood gases	80

List of Figures

Fig. No	Figure Title	Page
1	Cut section of the fetal placenta	26
2	The intricate nature of the fetal circulation	27
3	Changes in systolic blood pressure	69
4	Changes in diastolic blood pressure	72
5	Changes in mean blood pressure	75
6	Changes in heart rate.	. 78

Introduction & Aim of the work

Introduction & Aim of the Work

Spinal anesthesia has been the most common choice for management of the uncomplicated casarean section (Stuart, 1968). Spinal anesthesia for casarean section is associated with an unacceptably high incidence of maternal hypotension despite administration of crystalloid preload and uterine displacement (Rout et al., 1992a). Maternal hypotension is a recognized complication which may compromise the welfare of both motor and fetus (Jakson et al., 1995).

The incidence of hypotension during spinal anesthesia for casarean section is reported to be as high as 80% (Yoog and Essat, 1982). Maternal hypotension is associated with the distressing sympotoms of dizziness, nauseia, vomiting, and also may interfere with surgical procedure.

Lateral uterine displacement using a 15° tilt is essential to prevent the "supine hypotensive syndrome", where the compression of inferior vena cava by the gravid uterus leads to decrease in venous return and subsequent hypotension (Clark et al., 1976). Although fluid preloading is still widely used, its place in the management of hypotension induced by spinal anesthesia has been questioned (Jakson et al., 1995, and Rout and Rocke1994).

The management of choice of this problem is the use of intravenous vasopressors. Ephedrine a mixed acting (Direct and indirect acting) sympathomimetic amine, is probably the vasopressor of choice, it maintains arterial blood pressure by increasing cardiac output and heart rate as a result of its dominant activity on B₁ adrenoceptors. The usual

approach to the use of vasopressors in this clinical setting is reactive rather than proactive "spinal anesthesia induced hypotension occurs, and is then treated accordingly".

Given the frequency with which spinal hypotension occurs, a more logical approach to its prevention may be the administration of prophylactic intra-muscular ephedrine. Intramuscular ephedrine 50mg has been found to be safe for the fetus (Ayorinde et al., 2001).

Aim of the work:

To compare conventional technique of preloading 20ml kg⁻¹ normal saline immediately before spinal anesthesia with prophylactic 50mg ephedrine intramusculary 10minutes before spinal anesthesia, on maternal haemodyramic and fetal well being.

Review of Literature