Percutaneous fixation of displaced proximal humeral fractures

Theses for the partial fulfillment of the MD certificate in orthopedic surgery

Presented by

Doctor WALID SADEK NASSAR

Supervised by

Professor Doctor
ALAA EL DEEN MOHY EL DEEN SOLYMAN

Professor Doctor
MOHAMAD OMAR AHMAD SOLYMAN

Department of orthopedic surgery - Cairo University 2015

Acknowledgement

First and foremost, I feel always indebted to god, the most kind and merciful for giving me the strength and the power and will to finish this work.

I would like to thank my supervisor *Prof. Dr. Alaa El Deen Mohy El Deen Solyman*, Professor of orthopedics, Faculty of medicine, Cairo University for his supervision whose inspiration and knowledge taught me valuable lessons in my upcoming career. Also I would like to express my deepest gratitude and appreciation for his kind and continuous support and encouragement throughout the work. It has been a great honor to work under his supervision.

Special thanks are due to *Prof, Dr. Mohamad Omar Ahmad Solyman*, Professor of orthopedics, Faculty of medicine, Cairo University. No words would be sufficient to express my deepest gratitude and appreciation for his close supervision, valuable remarks, continuous support, limitless patience, cheerful encouragement and expert guidance throughout the study.

Last but not least, I would like to express my deepest and real gratitude to the *orthopedic department* Kasr el Ainy Cairo University and Helmya military hospital for giving me the chance to work on this study.

Finally, to *my family*, especially my father, mother and brother, who stood by me all through the years of my studying and are responsible for who I am. Special thanks to my wife and sons, for your unlimited patience through my whole life and your continuous unlimited incredible support and encouragement.

WALID SADEK NASSAR

Contents

Acknowledgements	i
Contents	ii
List of Figures	iii
List of Abbreviations	V
Chapter 1	
Review of Literature	
Introduction	1
Epidemiology	3
Anatomy	4
Biomechanics	24
Classification	28
Historical Perspective	32
Clinical Evaluation	34
Radiographic Assessment	36
Management	38
complications	42
Chapter 2	
Patients and Methods	
Patients	48
Methods	51
Technique of reduction	58
Post operative assessment system	73
Cases	79
Chapter 3	
Results	
Pre operative result analysis	103
Post operative result analysis	107
Comparative result analysis	119
Chapter 4	
Discussion.	148
Chapter 5	
Summary	170
Conclusion	173
Chapter 6	
References.	174

List of Figures

Number	Title	Page
Figure 1	diagram showing proximal humeral fractures	1
Figure 2	Shoulder anatomy	4
Figure 3	light bulb sign	5
Figure 4	drawing demonstrates the deforming forces on the proximal humerus	5
Figure 5	Important landmark	6
Figure 6	showing shoulder ligaments	8
Figure 7	Regions of proximal humerus	10
Figure 8	Hertel criteria	12
Figure 9	showing Humeral retroversion	13
Figure 10	showing humeral bone density	14
Figure 11	Regions of upper humerus	15
Figure 12	Radiograph showing vascular anatomy	16
Figure 13	humeral circumflex artery	17
Figure 14	passage of artery accompanying nerve through quadrangular space	18
Figure 15	showing the innervation of the shoulder	20
Figure 16	passage of axillary nerve and its branches in the quadrangular space	21
Figure 17	axillary neurovascular structure	22
Figure 18	Divisions of the axillary nerve in the quadrangular space	23
Figure 19	Showing biomechanics of the humeral shaft	24
Figure 20	Shoulder /Arm joint motion	26

Figure 21	Neer's classification of proximal humerus fractures	29
Figure 22	AO/ASIF classification for proximal humerus fractures	31
Figure 23	mechanism of injury	35
Figure 24	Radiographic evaluation of proximal humerus fractures	36
Figure 25	computed tomography of upper humerus showing comminution of the humeral head	37
Figure 26	Comminuted fracture	49
Figure 27	Avoiding axillary nerve	54
Figure 28	showing patient positioning	56
Figure 29	C arm position	57
Figure 30	Two part fracture of the proximal humerus	58
Figure 31	Pin position in proximal humeral fractures	59
Figure 32	position of pins post operatively	60
Figure 33	Three and four part fractures	62
Figure 34	Diagram showing position of pins in three part fractures	63
Figure 35	position of pins in three part fractures	64
Figure 36	few pin placement leads to loss of fixation	65
Figure 37	valgus impacted fracture	66
Figure 38	percutaneous reduction	67
Figure 39	steps of percutaneous reduction of valgus impacted fracture	68
Figure 40	percutaneous reduction of greater tuberosity	70

List of Abbreviations

CHL		
SGL	Superior Glenohumeral Ligament	
GT	Greater Tubrosity	
LT	Lesser Tubrosity	
GHL		
IGHL		
CAL		
AHCA		
PHCA		
AN		
AL	Anterolateral	
CT		
AVN		
AP		
ADL		
ESSES	European Society for Shoulder and Elbow Surgery	
PHILOS	Pre-shaped Angular Stable Locking Plates	
DASH	Disabilities of the Arm, Shoulder and hand score	
ASES	American should and Elbow Surgeons Shoulder score	

Aim of the Work

The aim of this work is to evaluate the clinical outcome of percutaneous fixation of displaced proximal humeral fractures and to discuss the topic as regard anatomy, biomechanics, clinical, radiological diagnosis, indication, contraindication, scoring, technique, follow up and results of the percutaneous fixation of displaced proximal humeral fractures using threaded pins to eliminate the need for open reduction and internal fixation or hemi arthroplasty in proximal humeral fractures, and report follow – up results using this technique.

Chapter 1 Literature Review

1.1. Introduction:

Proximal humerus fractures (fig. 1) are relatively common, accounting for 5% to 9% of all fractures '

These fractures can pose a challenge for the treating orthopaedist because of the generally osteoporotic nature of bone in the elderly and the relative deforming forces of the surrounding muscles. Fractures are classified according to the Neer criteria, and treatment is often guided by the relative displacement of the anatomic fragments. Non displaced fractures have historically been treated conservatively, with generally good outcomes ^{*}.

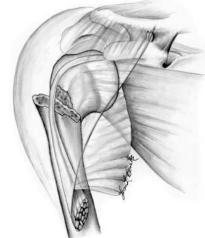


Figure (1): diagram showing proximal humeral fractures¹

Displaced fractures with angulation of the articular surface >45° and displacement of the major segments >1 cm have been treated surgically, as have fractures with substantial valgus impaction, all with mixed results *.

Surgical techniques have included percutaneous fixation, standard plate-and-screw fixation, intramedullary fixation with rods or pins, the use of tension bands with and without plates or rods, standard plate modification into blade plate constructs, and hemiarthroplasty [£].

Many of these alternative open techniques were developed because of the high failure rates noted initially with standard plating. The inherent difficulties with internal fixation have led several authors to recommend hemiarthroplasty for the treatment of most three- and four-part humerus fractures ⁵.

Proximal humerus fractures are increasingly common in societies with maturing populations. These fractures are not simple to treat. A variety of options exists; however, outcomes are less than ideal in many patients ⁶.

Most proximal humerus fractures are either non displaced or minimally displaced and can be treated non surgically. Nonsurgical options focus on early functional exercises with the goal of achieving a functionally acceptable range of motion (ROM). For the 15% to 20% of displaced proximal humerus fractures that may benefit from surgery, no single approach is considered to be the standard of care ⁶.

Surgeons should be familiar with the different treatment options available, including recent advances in the management of complex periarticular fractures and in locking plate technology, which are particularly relevant to the care of these fractures. ⁷

Locking plate technology and the use of osteobiologics may become increasingly important in the management of displaced proximal humerus fractures, facilitating humeral head preservation in appropriately selected patients ⁸.

1.2. Epidemiology:

Proximal humerus fracture is the second most common fracture of the upper extremity, following distal forearm fracture. In people older than age 65 years, fracture of the proximal humerus is the third most common fracture, after hip fracture and Colles' fracture. ⁶

Proximal humerus fracture is associated with significant morbidity, leading to functional impairment lasting at least 3 months. Displaced proximal humerus fractures generally result in long-term functional disability. This type of injury usually is sustained after a moderate-energy fall in an individual with low bone density ⁶.

Fractures of the proximal humerus comprise about 5% of all fractures. The incidence increases rapidly with age and occurs twice as often in women as in men. Most occur as a result of a fall from a standing height. Fractures in younger patients are more often the result of higher energy trauma. Kannus et al. projected a 300% increase in these fractures over the next 30 years.

Recent reports suggest that the incidence of displaced proximal humeral fractures may be greater than reported in earlier literature. Tamai et al.; 2009 reported that 64% were displaced ⁹

1.3. Shoulder anatomy:

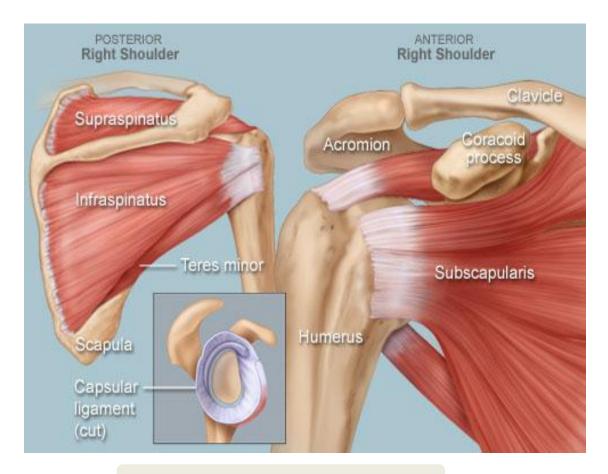


Figure (2): Shoulder anatomy

The glenohumeral joint is the most mobile joint in the body (fig.2), resulting from a series of complex interactions among bone, muscle, and soft tissue forces. An appreciation for this anatomy enables the surgeon to effectively restore function in the setting of fracture.

In neutral rotation, the greater tuberosity forms the lateral border of the proximal humerus. The lesser tuberosity, which sits directly anterior in this position, becomes profiled medially when the humerus is internally rotated this creates a rounded silhouette "light bulb sign" on radiograph (fig.3).

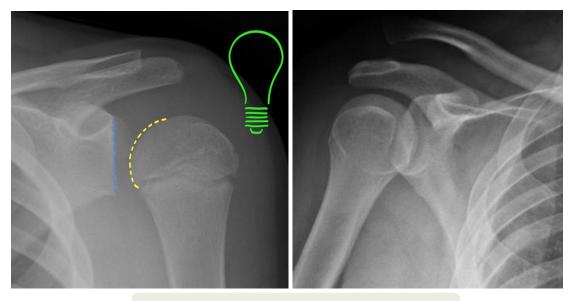


Figure (3): light bulb sign

The long head of the biceps passes between the two tuberosities in the intertubercular groove, approximately 1cm lateral to the midline of the humerus, and its relationship is an important landmark during fracture reduction ¹⁰

Figure (4): This drawing demonstrates the deforming forces on the proximal humerus in the setting of fracture. The supraspinatus (A) exerts a force posteromedially. The infraspinatus and teres minor (B) pull posteromedially and externally rotate. The subscapularis (C) exerts an anteromedially directed force on the lesser tuberosity. The pectoralis major (D) internally rotates and adducts, while the deltoid (E) pulls superiorly on the metadiaphysis of the humerus. ¹⁰

The supraspinatus muscle, innervated by the suprascapular nerve, attaches to the superior facet of the greater tuberosity with a force vector that pulls predominantly in a medial direction. The infraspinatus muscle, also innervated by the suprascapular nerve, inserts on the middle facet of the greater tuberosity. The teres minor muscle, innervated by the axillary nerve, attaches to the inferior facet. Together, these three externally rotate and yield a posteromedially directed deforming force (fig.4). Therefore, if the greater tuberosity is fractured, it is displaced posteromedially. If it remains intact, and there is a surgical neck fracture, the resulting deformity is typically varus and external rotation. Anteriorly, the subscapularis, innervated by the upper and lower subscapular nerves, attaches to the lesser tuberosity, resulting in anteromedial displacement of this osseous fragment if fractured. The pectoralis major tendon insertion is an important landmark (fig.5), especially during hemiarthroplasty. Murachovsky et al. showed that the average distance from the pectoralis major tendon insertion to the tangent to the humeral head was 5.6 cm 11.

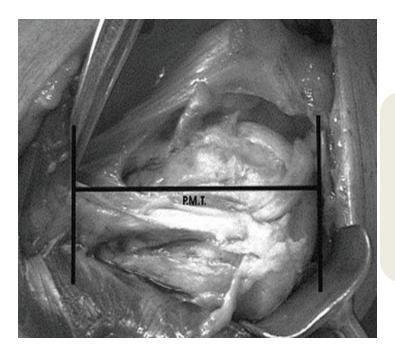


Figure (5): The average distance from the pectoralis major tendon (PMT) insertion to the tangent to the humeral head is 5.6 cm ¹⁰

1.3.1. **BONES**:

A.Scapula:

- Body is formed by intramembranous ossification
- Glenoid has 2 ossific centers...... Failure of inferior center formation 1^{ry} glenoid dysplasia
- Glenoid has thicker cartilage to the periphery & thin in center making it congruent
- It has a smaller surface than head...... Mobility.

B. Acromion:

- Acromion has 2 ossific centers...... Failure of fusion (osacromiale).
- Humans & chimpanzees are the only animals with an acromion
- Acromion provides a platform for a powerful deltoid but impedes repeated overhead activities

C.Proximal Humerus:

- Epiphysis has 3 ossific centers head, greater & lesser tuberosities.
- The center of head rotation..... medial & posterior to shaft