

Cairo University National Institute of Laser Enhanced Science Dept. of Laser Sciences and Interaction

In Vitro Study to Evaluate the Hardness of Enamel and Dentin Surfaces Treated by 308 nm XeCl Excimer Laser

Thesis

Submitted to National Institute of Laser Enhanced Science (N.I.L.E.S.)

In the Partial Fulfillment of the Requirements for the Master Degree in Laser Sciences and Interaction

By

Nadia El-desouky Mohamed Ali

B. Sc. Electrical Power Engineering

2009

In Vitro Study to Evaluate the Hardness of Enamel and Dentin Surfaces Treated by 308 nm XeCl Excimer Laser

Thesis

Submitted to National Institute of Laser Enhanced Science (N.I.L.E.S.)

In the Partial Fulfillment of the Requirements for the Master Degree in Laser Sciences and Interaction

By

Nadia El-desouky Mohamed Ali

B. Sc. Electrical Power Engineering

Supervision

Prof. Dr. Yehia Badr

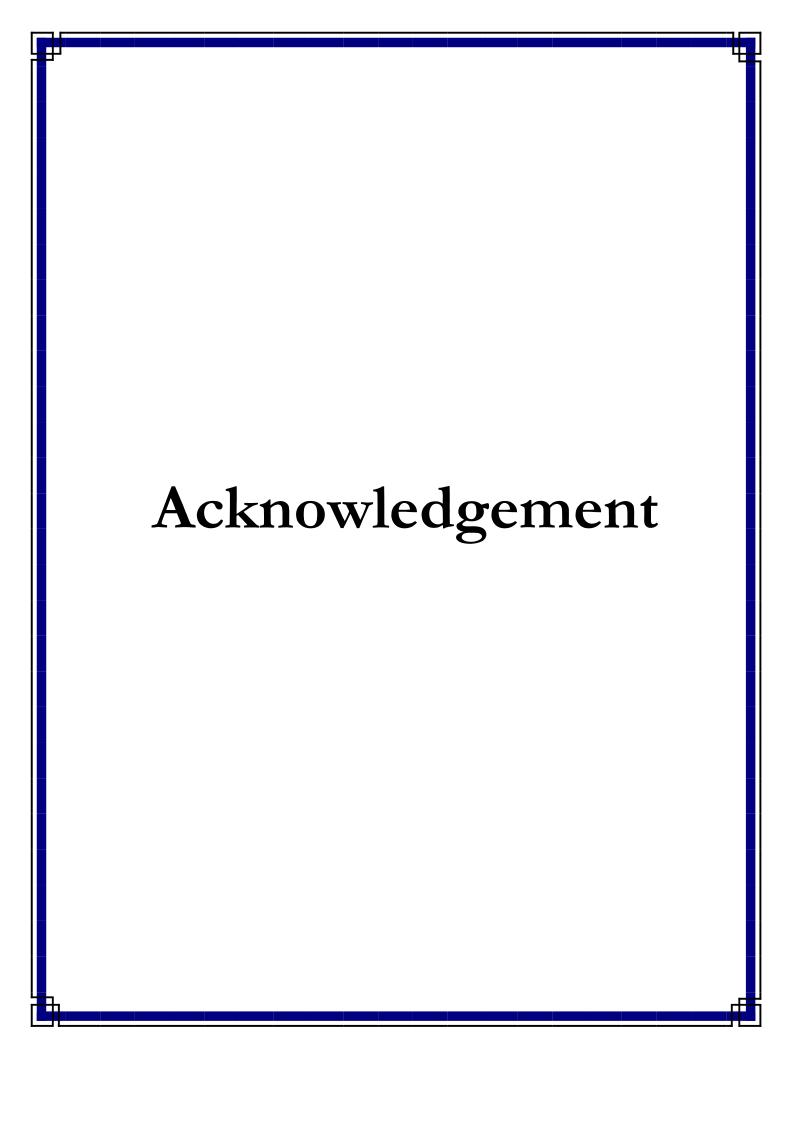
Dr. Mustafa Gheith

Professor of Laser Physics - N.I.L.E.S. Cairo University.

Lecturer of laser applications in oral & dental medicine- N.I.L.E.S.- Cairo University

Approval Sheet

Title of Thesis:

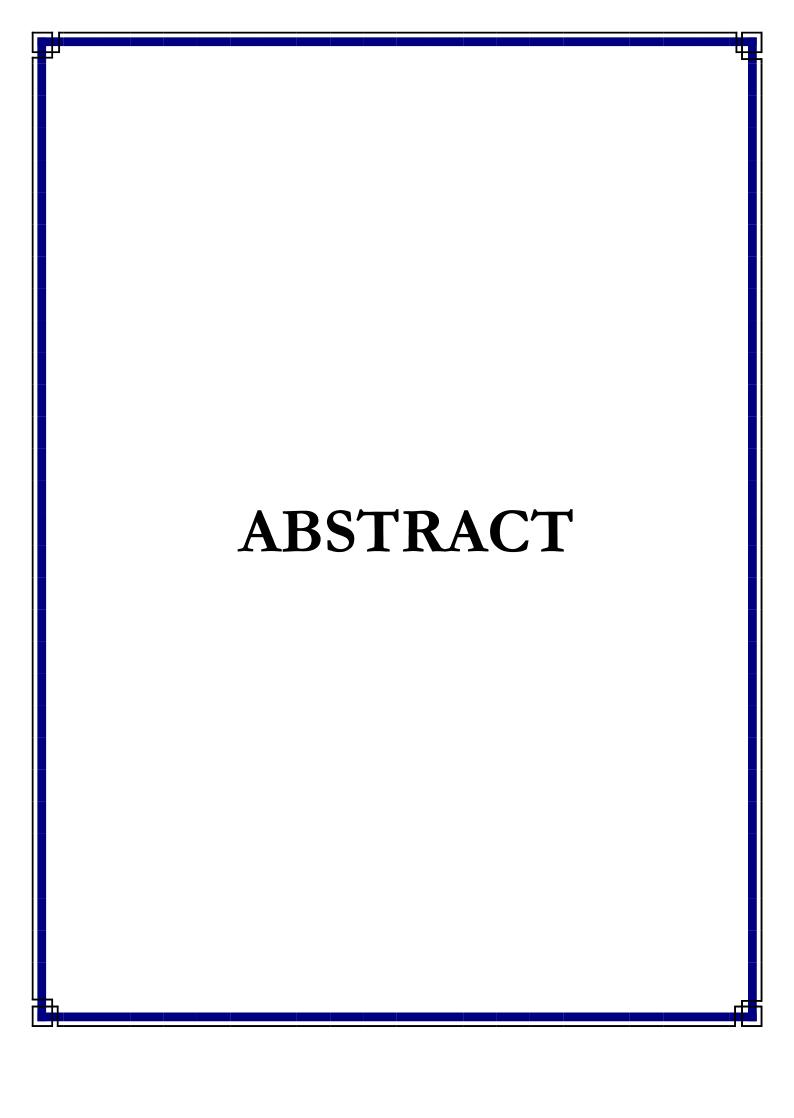

"In Vitro Study to Evaluate the Hardness of Enamel and Dentin Surfaces Treated by 308 nm XeCl Excimer Laser".

Name of the Candidate:

Eng. Nadia El-desouky Mohamed Ali

Supervisors:

- 1- Prof. Dr. Yehia Badr
- 2- Dr. Mustafa Gheith
 - Date Approved


First of all thank Allah, who gives me the strength and the patience to complete this work.

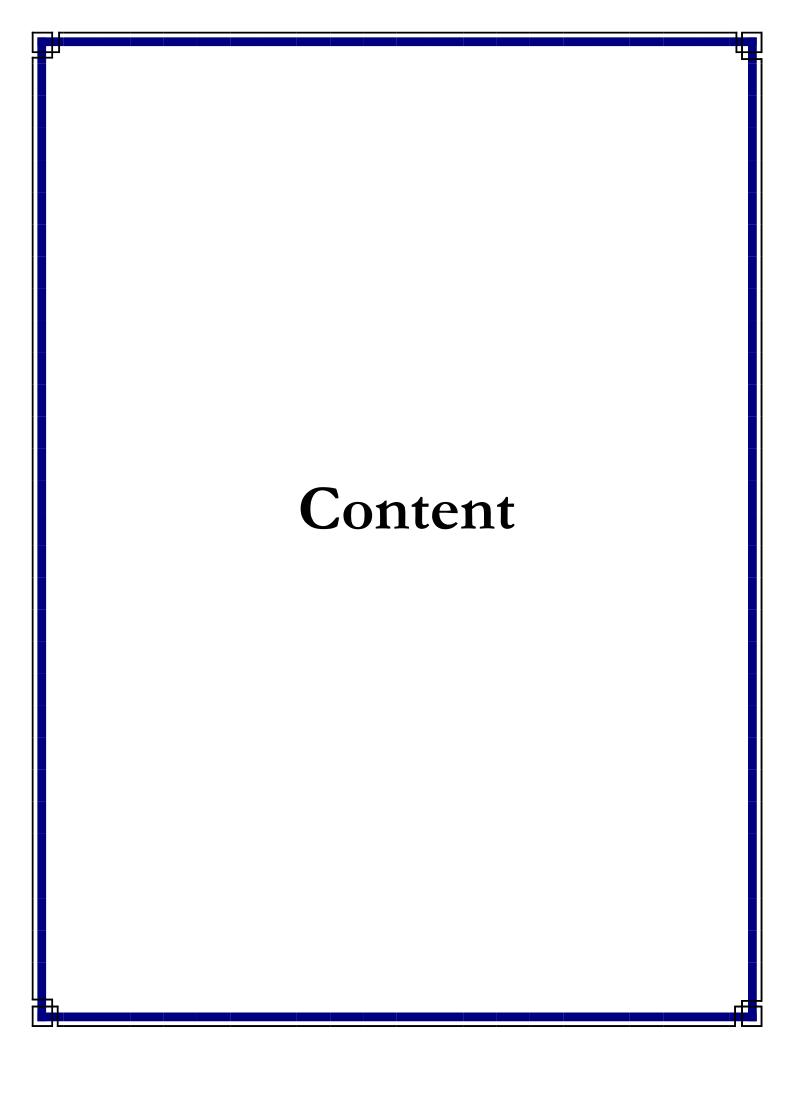
I would like to express my sincere and deep gratitude of "Prof. Dr. Yehia Badr" Professor of Laser Physics, and Former Dean of N.L.I.E.S. for corporation with me and guidance through this work, and for his fruitful discussion.

I would like to thank "Dr. Mustafa Gheith" for his assistance, help, guidance and his valuable suggestions.

Special thanks to my wonderful *father*, who encourage me during this work, and I would like to thank my friend *Rania* for her help and being a faithful friend.

Also, I would like to thank every one who helped me in this work.

ABSTRACT


Background and Objective: The use of excimer lasers for treatment of dental hard tissues has considerable potential because the combined characteristics of low wavelength and short pulse result in limited heat diffusion and, therefore, tissue ablation without the problems of collateral damage. The aim of this work was to study the effect of XeCl excimer laser with wavelength of 308 nm on the hardness of human dentin and enamel surfaces and studied these effects spectroscopically.

Material and Methods: 24 lower anterior teeth were subjected to irradiation at 308 nm using a Lambada-Physik model OPTEX excimer laser and XeCl fill. Morphology of enamel and dentin surfaces was assessed by scanning electron microscopy (SEM), and studied effects by x-ray diffraction (XRD), and Fourier Transform infrared spectroscopy (FT-IR).

Results: This study suggested that laser irradiation is effective in improving enamel and dentin micro-hardness. Spectrum of treated surface appeared very similar to that of its untreated counterpart. Laser treatment has only slightly affected the enamel apatite and caused no structural damage. The band intensity reduction about 50% was observed after laser treatment, indicating the decrease of organic matters due to bond breakage.

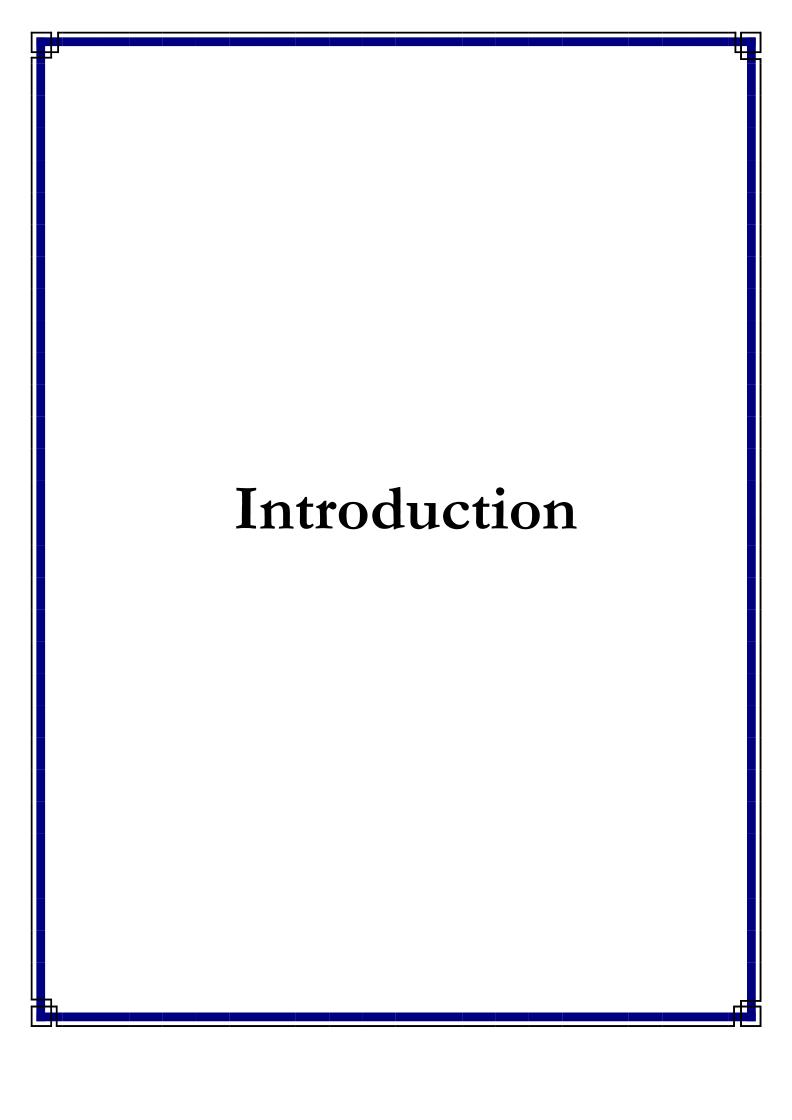
Conclusion: Use of excimer laser irradiation at 308 nm on dental hard tissues should be safe and effective in the clinical situations. Specially, it can be delivered by optical fiber.

Key words: excimer; laser; enamel; dentin; micro-hardness; FT-IR.

Content

Content	I-II
Lists of Figures & Tables	III-IV
Chapter I: Introduction	
Preface	1
1/1 Micro-Anatomy of Dental Hard Tissues	3
1/1/1 Enamel	3
1/1/2 Dentin	4
1/2 Laser Physics	5
1/2/1 Principles of Laser Irradiation	5
- Some important laser terminology	7
1/2/2 Laser Components	8
1/2/3 Properties of the Laser Radiation	9
1/2/4 Modes of Operation	10
1/2/5 Types of Laser	11
1/2/6 Laser Tissue Interaction	15
a) Photothermal Effects	17
- Photocoagulation	17
- Photovaporization	18
b) Photochemical Effects	18
c) Non-Linear Effects	19
- Photoablation	19
- Ionization	19
- Plasma Formation	19
1/2/7 Laser Safety	20
- Classification of Lasers	20
- Safety Rules	21
1/3 Laser Effects on Dental Hard Tissues	23
1/3/1 Optical Properties of Hard Tissues	23
1/3/2 Thermal Effects	24
1/3/3 Mechanical Effects	24
1/3/4 Chemical Effects	25
1/3/5 Thermally Induced Ablation of Dental Tissues	25
1/3/6 Ablative Decomposition	25
1/4 Analytical Techniques	26
1/4/1 X-Ray Powder Diffraction Technique	26
1/4/2 Fourier Transform Infrared Technique	29
1/4/3 Scanning Electron Microscope Technique	31
1/4/4 Hardness Tester	33
- Vickers Hardness Test	34

Aim of Study	35
Chapter II: Material and Methods	
2/1 Material of the Study	36
2/1/1 Number of Teeth	36
2/1/2 Laser Device	36
2/1/3 Roughness Device	37
2/1/4 Micro-Hardness Device	38
2/1/5 Scanning Electron Microscope Device	39
2/1/6 X-Ray Diffraction Device	40
2/1/7 FT-IR Spectrometer	41
2/2 Methods of the Study	42
2/2/1 Sample preparation & Laser irradiation	42
2/2/2 Roughness measurements	43
2/2/3 Micro-Hardness measurements	43
2/2/4 Scanning Electron microscope test	44
2/2/5 X-Ray Diffraction analysis	44
2/2/6 FT-IR Spectrum	44
Chapter III: Results	
3/1 Micro-Hardness and Roughness Measurements	45
3/1/1 FOR ENAMEL	45
3/1/2 FOR DENTIN	46
3/2 Scanning Electron Microscope (SEM)	47
3/2/1 FOR ENAMEL	47
3/2/2 FOR DENTIN	49
3/3 X-Ray Diffraction	52
3/4 Fourier Transform infrared spectra	54
Chapter IV: Discussion	
Discussion	58
Chapter V: Conclusion	
Conclusion	64
References	66
Arabic Summery	74


Lists of Figures and Tables

- <u>List of Figures:</u>

Figure (1-1): Cross- section of the Tooth.	3
Figure (1-2): The Micro-Anatomy of the Tooth.	4
Figure (1-3): Energy transitions characteristic of atoms in stimulated emission.	6
Figure (1-4): Laser Components.	9
Figure (1-5): Characteristics of light bulb as opposed to the laser.	10
Figure (1-6): Potential-energy curves for KrF excimer laser.	13
Figure (1-7): Basic components of the excimer laser.	15
Figure (1-8): Laser-Tissue Interactions.	16
Figure (1-9): Absorption Spectrum of Hemoglobin and Water.	17
Figure (1-10): The absorption of laser light in water and hydroxyapatite (HA) in	
the spectral range from 200 nm to 10 μm.	24
Figure (1-11): Simplified sketch of one possible configuration of the X-ray diffraction.	28
Figure (1-12): Example of an X-ray powder diffractogram produced during an X-	
ray scan.	28
Figure (1-13): a Fourier Transform Infrared instrument.	30
Figure (1-13): shows a schematic for a generic SEM.	32
Figure (1-14). Shows a schematic for a generic SEM. Figure (1-15): Operating principles of scanning electron microscope device.	33
Figure (2-1): 308 nm XeCl excimer laser device.	36
Figure (2-1): Surface roughness measurement device.	37
Figure (2-2): Surface roughness measurement device. Figure (2-3): HMV-2000 Micro Hardness Tester.	38
Figure (2-4): A scanning electron microscope device.	39
Figure (2-4): A scanning electron incroscope device. Figure (2-5): Philips X'PERT MPD device.	40
Figure (2-5): Thimps ATERT WITD device. Figure (2-6): The Bruker Optics IFS 66 series FT-IR spectrometer.	41
	41
Figure (2-7): Unfocused beam with 308 nm XeCl excimer laser was applied	43
perpendicular on enamel and dentin surfaces.	
Figure (3-1): Scanning electron microscopy (SEM) of untreated enamel	47
"magnification 500x, accelerated voltage 30.0 Kv".	
Figure (3-2): Scanning electron microscopy (SEM) of enamel treated by 308 nm	48
XeCl excimer laser "magnification 500x, accelerated voltage 30.0 Kv".	
Figure (3-3): Scanning electron microscopy (SEM) of untreated dentin	49
"magnification 5000x, accelerated voltage 30.0 Kv".	
Figure (3-4): Scanning electron microscopy (SEM) of dentin treated by 308 nm	50
XeCl excimer laser "magnification 800x, accelerated voltage 30.0 Kv".	
Figure (3-5): Scanning electron microscopy (SEM) of dentin treated by 308 nm	51
XeCl excimer laser "magnification 5000x, accelerated voltage 30.0 Kv".	50
Figure (3-6): X-ray diffraction analysis of four samples.	52 53
Figure (3-7): A set of X-ray diffraction patterns obtained from four samples.	53
Figure (3-8): shows typical FT-IR spectra obtained from normal and irradiated	54
enamel and dentin surfaces.	
Figure (3-9a): shows typical FT-IR spectra obtained from normal and irradiated	55
enamel and dentin surfaces.	
Figure (3-9b): Raman spectrum from normal dentin surfaces.	57

- <u>List of Tables:</u>

Table (1-1): Types of laser.	12
Table (1-2): showed characteristic of excimer lasers.	14
Table (3-1): Vickers hardness and roughness results for enamel surface, laser- treated and untreated, averaged over at least four spots in each case.	45
Table (3-2): Vickers hardness and roughness results for dentin surface, laser- treated and untreated, averaged over at least four spots in each case.	46
Table (3-3): Infrared characteristic bands and peaks associated.	56

CHAPTER I INTRODUCTION

CHAPTER I

INTRODUCTION

Preface:

Since the development of the ruby laser by Maiman (Maiman et al, 1960) and the application of this laser in dentistry by Stern and Sognnaes (Stern and Sognnaes et al, 1964), many researchers have studied and examined laser effects on dental hard tissues (Wigdor et al, 1995).

Regardless of the wavelength used, lasers in dentistry offer a variety of advantages. They offer a dry operating field and excellent visibility, reducing operative time, and depending on power settings and mode of delivery so they can vaporize, coagulate, or cut tissue (Misernedino et al, 1995).

New possibilities for the application of lasers in dentistry have been proposed based on the use of excimer lasers. Excimer lasers define a different regime of laser-tissue interaction, because ultraviolet photons are energetic enough to result in direct bond breaking in organic molecules. This mechanism of energy absorption, combined with the very short pulse duration, virtually eliminates thermal damage. Additional benefits arise from the fact that organic tissue absorbs UV radiation well and the tissue ablation rates can be controlled with extreme precision [(Tasev et al, 1990), (Neev et al, 1991)].

The application of laser radiation to both hard and soft tissue is becoming wide spread. It serves as a replacement of the dental drill by eliminating noxious stimuli, noise, and vibration.