Physics Department

Faculty of Science

Ain Shams University

Synthesis and characterization of rubberferrite composites

Thesis

Submitted for the degree of

Master of Science

in Physics

By

Mohammed Adel Abd El-Aal Aly Nouh

Physics Department

Faculty of Science, Ain Shams University

Egypt

Supervisors

Prof. Dr. Adel Abd El –Sattar

Professor of Solid State Physics Physics Department, Ain Shams University Prof. Dr. Doaa Essamy El-Nashar

Professor of Polymer chemistry Polymer & Pigments Department, NRC

Assoc.prof. Waleed Ragab Abd El-Rasheed Agami

Assoc.prof. of Solid State Physics Physics Department, Ain Shams University

Physics Department

Faculty of Science

Ain Shams University

Synthesis and characterization of rubberferrite composites

Thesis

Submitted for the degree of

Master of Science

in Physics

By

Mohammed Adel Abd El-Aal Aly Nouh

Physics Department

Faculty of Science, Ain Shams University

Egypt

Approved by

Prof. Dr. Adel Abd El –Sattar

Professor of Solid State Physics Physics Department, Ain Shams University Prof. Dr. Ahmed Hussien Ashour

Professor of Physics Atomic Energy Authority

Prof.Dr. Hamdy Mohammed Osman Kalifa

Professor of Physics Physics Department, Cairo University

Degree: Master Degree in Physics

Title: Synthesis and characterization of rubber-

ferrite composites

Name: Mohammed Adel Abd El-Aal Aly Nouh

Thesis Supervisors:

Prof. Dr. Adel Abd El-Sattar

Professor of Solid State Physics

Physics Department, Faculty of Science

Ain Shams University

Prof. Dr. Doaa Essamy El-Nashar

Professor of Polymer chemistry

Polymer and Pigments departments

National Research Center

Assoc.prof. Waleed Ragab Abd El-Rasheed Agami.

Assoc.prof. of Solid State Physics

Physics Department, Faculty of Science

Ain Shams University

Acl	knowled	gement	
Lis	t of Figu	ıresI	
Lis	t of Tab	lesV	II
Ab	stract.	• • • • • • • • • • • • • • • • • • • •	1
Int	roduct	ion	3
	(Chapter 1: Theoretical background	
1.1	Classif	fication of polymers	.6
1.2	Rubbe	ers	7
		ypes of rubbers	
	i- I	Natural rubbers	8
		Synthetic rubbers	
		Acrylonitrile Butadiene Rubber (NBR)	.10
1.3	Rubbe	er ferrite composites(RFC)	
1.4	Ferrite	es	.13
	1.4.1	Chemical composition of spinel ferrites	.13
	1.4.2	Crystal Structure of Spinel Ferrites	.14
	1.4.3	Distribution of the metal ions over octahedral a	and
		tetrahedral sites in spinel ferrites	.17
	1.4.4	Mechanisms of the electrical conduction	in
		transition metal oxides and ferrimagne	etic
		materials	.18
	1.4.5	Dielectric properties of ferrites	.21

Chapter 2: Literature Survey

Co-	Zn ferrite properties	30				
	Effect of some spinel ferrites on the different properties of natural rubber (NR)					
	ect of some spinel ferrites on the different prothetic rubber	_				
Ain	n of the Work	40				
	Chapter 3: Experimental Techniqu	ies				
3.1	Preparation of Samples	41				
	Preparation of Ferrite	41				
	Rubber preparation	43				
3.2	Rubber compounding	43				
3.3	Characterization	50				
	I- X-ray diffraction	50				
	II- FTIR spectroscopy	50				
	III- Scanning electron microscopy	52				
	IV- Transmission electron microscopy	52				
	V- Rheometric characteristics	52				
3.4	Mechanical properties	55				
	I-Tensile strength & Young's modulus	55				
	II- Hardness measurements	56				
3.5	Dielectric Measurements	57				

Chapter 4: Results and Discussion

Group I

4.1	Physical Properties6	0
	4.1.1 X-ray Analysis6	60
	4.1.2 FTIR Analysis6	56
	4.1.3 Transmission Electron Microscope (TEM)7	0
	4.1.4 Scanning Electron Microscope (SEM)	1
4.2	Rheological Properties	73
	4.2.1 The variation of torque and hardness with different	ıt
	samples	13
	4.2.2 The variation of time (scorch, cure) and cure rate	
	index with different samples	' 4
4.3	Mechanical properties7	5
	4.3.1 The variation of stress and Young's modulus with	L
	different samples7	' 5
4.4	Electrical properties7	7
	4.4.1 The variation of the electrical resistivity, real and	
	imaginary parts of dielectric constant with frequency7	7
	4.4.2 Composition dependence of resistivity, real and	
	imaginary part of dielectric constant8	0
	Group II	
4.5	Physical Properties8	2
	4.5.1 Scanning Electron Microscope (SEM)8	
4.6	Rheological Properties	34
	4.6.1 The variation of torque and hardness with different	ıt
	ferrite load8	34
	4.6.2 The variation of time (scorch, cure) and cure rate	
	index with different ferrite load85	5

4.7 N	Iechanical properties	86
	4.7.1 The variation of stress and Young's modu	lus with
	different ferrite load	86
4.8 E	Clectrical properties	88
	4.8.1 The variation of the electrical resistivity, r	eal and
	imaginary parts of dielectric constant with frequency	ency88
	4.8.2 The variation of resistivity, real and imagi	nary part
	of dielectric constant with different filler loading	ç91
	Group III	
4.9	Physical Properties	93
	4.9.1 X-ray Analysis	93
	4.9.2 Transmission Electron Microscope (TEM))96
4.10	Rheological Properties	99
	4.10.1 The variation of torque and hardness with	different
	particle size of ferrite	99
	4.10.2 The variation of time (scorch, cure) and cu	ire rate
	index with different particle size of ferrite	100
4.11	Mechanical properties	101
	4.11.1 The variation of stress and Young's modu	lus with
	different particle size of ferrite	101
4.12	Electrical properties	102
	4.12.1 The variation of the electrical resistivity, r	eal and
	imaginary parts of dielectric constant with frequency	ency102
	4.12.2 The variation of the resistivity, real and in	naginary
	parts of the dielectric constant with particle size	of ferrite
	filler	105
	Conclusion	107
	References	109

ACKNOWLEDGEMENT

First, I thank **Allah**, the most **Beneficent**, the most **Merciful**, Who gave me the ability to do this work and I am asking **His** support for further success in my scientific work.

This work is dedicated to my loving family, for I would not be who I am today without their love, friendship and everlasting support. I am forever thankful.

It was honor for me that I could be one of the students of **Prof.Dr. Adel Abd El-Sattar Mohammed**, Physics Department, Faculty of Science, Ain Shams University and **Prof. Dr. Doaa El-Nashar**, polymer and pigment department, National research center for proposing and planning this investigation and their continuous encouragements, valuable suggestions, capable supervision and reading throughout the manuscript that have rendered the realization of this work to be possible. The valuable discussions and continuous assistance which were so willingly during the course of this work will never be forgotten.

Deep thanks to **Assoc.Prof.Dr. Waleed Ragab Abd El-Rasheed Agami**, Physics Department, Faculty of Science, Ain Shams University for proposing and planning this investigation and his continuous encouragements, valuable suggestions, capable supervision and friendship.

I would like to express my deepest thanks to **Prof. Dr. Ahmed Abd El-Ghany** and **Assoc.Prof.Dr. Hesham El-Sayed**, Physics Department, Faculty of Science, Ain Shams