المال المال

؟ قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إلاَّ مَا
 عَلَّمْتَنَا إِنَّكَ أَنتَ العَلِيمُ الحَكِيمُ ؟

مال في العظيم سورة البقرة الآية (32)

Effect of different motions on the mechanical behavior of recent NiTi enlarging systems and the stress distribution on curved root canal dentin (Finite Element study)

Thesis submitted to the Faculty of Dentistry
Ain Shams University
For
Partial fulfillment of the requirement of Ph.D. in
Endodontics

By

Manar Mohammed Galal Helmy Hamouda
BDS Ain Shams University 2004
Master degree in Endodontics -Seuz Canal
University 2011
Assistant Researcher in Department of Restorative
and Dental materials
National Research Center

Supervisors

Prof. Dr. Salma Hassan El-Ashry

Professor in Department of Endodontic Faculty of Dentistry- Ain Shams University

Prof. Dr. Mohamed Hussein Zaazou

Professor Researcher in Department of Restorative and Dental materials National Research Center

Ass. Prof. Dr. Shehab El-Deen Mohamed Saber

Associate Professor in Department of Endodontic Faculty of Dentistry- Ain Shams University

Dr. Tamer Mounier Mousa Nassef

Senior Lecturer in Department of computer and software engineering

Misr University for science and technology

Dedication

I would like to express my deepest appreciation and gratitude to my father and mother for their endless love, to my dear husband for his support, to my lovely kids Ali and Malak, and to my sweet sisters

Acknowledgment

Thanks to God first I would like to express my gratefulness and respect to

Prof.Dr. Salma Hassan El-Ashry

Professor of Endodontics, Faculty of Dentistry, Ain Shams University,

for her moral and scientific support and for giving me the honor of working under her careful supervision and valuable guidance.

I would like also to express my gratefulness and respect to Ass. Prof. Dr. Shehab El-Deen Mohamed Saber
Ass. Prof. of Endodontics, Faculty of Dentistry, Ain
Shams University,
for his expert guidance and great encouragement

I would like also to thanks **Prof. Dr. Mohamed Hussien Zazou**Prof. of conservative dentistry, NRC

For his continuous, unlimited support, and his sincere help

I would like to extend my thanks to

Ass. Prof. DR. Tamer Mounier Mousa Nassef

Senior Lecturer in Department of computer and software engineering -Misr University for science and technology

For his extended effort and encouragement

I would like also to thanks **Dr. Maram Khallaf**Researcher of conservative dentistry, NRC

For her continuous and sincere help

I would like to extend my thanks to

Eng. Ahmed Samy

For his extended effort and continuous help

List of contents

<u>Subject</u>					<u>Page</u>
List of tables	•••••	•••••		•••••	ii
List of figures	•••••	•••••	•••••		iv
Lists of charts	•••••	•••••		•••••	Xiii
Introduction	•••••				1
Review of literatur	·e		• • • • • • • • • • • • • • • • • • • •		3
• Bending an	d i	torsion	of		instruments
 Effect of instrume canal instrume Finite element of Stress distribution 	ents analys	is		15	22
Aim of the study	•••••	•••••	•••••	•••••	.46
Materials and Met	thods		•••••	•••••	47
Results	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	.78
Discussion	• • • • • • • • • • • • • • • • • • • •		•••••		131
Summary					147
Conclusions	•••••		•••••		150
References	•••••		•••••	•••••	151
Arabic					

List of Tables

<u>Table</u>			<u>Page</u>	
Table 1		ta collected		each
Table 2		information		each
Table 3		information	for 74	each
Table 4		ical properties of		ials in
Table 5	HyFlex,	esses values during and	On	
Table 6	HyFlex,	esses values during and	On	ioRace, eShape
Table 7	BioRace, Hy angles	ess during continuo Flex, and OneSha	pe files in d	
Table 8	BioRace, Hy angles	tress during recip Flex, and OneSha	pe files in d	

Table 9	Maximum stresse	es values in I	MPa during s	simulation	of
	continuous rota	tion and re	eciprocation	motion	of
	BioRace, HyFlex	k, and OneS	Shape files i	n 30 and 4	1 5
	degrees	ar	ngle		of
	curvature			.118	
Table 10	Maximum stress	es values in	MPa on th	e root can	al
	dentin prepare	d in con	ntinuous ro	otation ar	nd
	reciprocation m	otion with	BioRace, I	HyFlex, ar	ıd
	OneShape				
	files			.120	
Table 11	Maximum stres	ses values i	n MPa on th	ne root can	al
	dentin prepared	in continuo	us rotation	motion wi	th
	BioRace,	HyFlex,	and	OneShap	pe
	files	-		_	-
Table 12	Maximum stress	ses values in	n MPa on th	ne root can	al
	dentin prepared i	n reciprocati	on motion w	ith BioRac	e,
	HyFlex,	and		OneShap	ре
	files			.126	

List of Figures

<u>Figure</u>	<u>Page</u>
Fig. 1	Foam plate used as a holder to carry the files during imaging
Fig. 2	CT scanning of the files50
Fig. 3	Stereomicroscope imaging of the file
Fig. 4	Stereomicroscope image with magnification X10 of BioRace file
Fig. 5	Stereomicroscope image with magnification X10 of HyFlex file
Fig.6	Stereomicroscope image with magnification X10 of OneShape file
Fig.7	The pitch measuring of BioRace file
Fig.8	Matlab processing53
Fig.9	2D drawing of HyFlex file cross section
Fig.10	2D drawing of HyFlex file cross section in Soildworks software
O	The building of the 3D model of HyFlex file in Matlab

Fig.12	3D file						
Fig. 13	3D file	me	odel		of		HyFlex
Fig. 14	3D file						-
Fig. 15	FE file				of		
Fig.16	Meshing file						
Fig.17	FE model o	f HyFl	ex file)	•••••	58	
Fig.18	Meshing file						HyFlex
Fig.19	FE model o	f OneS	Shape	file		59	
Fig.20	Meshing file						neShape
Fig.21	Bending OneShape					•	and (c)
Fig.22	Torsion to OneShape fi						
Fig.23	Simulated ca	anal 30	° curv	ature.		62	,

Fig.24	Simulated canal 45° curvature62
Fig.25	(a) BioRace, (b) HyFlex, and (c) OneShape files models in
	30 degrees angle of
	curvature64
Fig.26	(a) BioRace, (b) HyFlex, and (c) OneShape files models in
	degree angle of
	curvature64
Fig.27	Factorial design66
Fig.28	Foam plate used as a holder to carry the files during C.T.
Ü	scanning69
Fig.29	C.T. scanning of the teeth69
Fig.30	3D model of the tooth obtained from C.T. scanning69
T	
Fig.31	Finite element model of the tooth75
Fig.32	The simulation of HyFlex file in the root
	canal77
Fig.33	Stress distribution on BioRace file during bending
	80
Fig.34	Areas of maximum stress on BioRace file during
	bending80
Fig.35	Stress distribution on HyFlex file during
	bending81

Fig.36	Areas of maximum stress on HyFlex file during bending
Fig.37	Stress distribution on OneShape file during bending
Fig.38	Areas of maximum stress on OneShape file during bending83
Fig.39	Stress distribution on BioRace file during torsion85
Fig.40	Areas of maximum stress on BioRace file during torsion
Fig.41	Stress distribution on HyFlex file during torsion
Fig.42	Areas of maximum stress on HyFlex file during torsion
Fig.43	Stress distribution on OneShape file during torsion
Fig.44	Areas of maximum stress on OneShape file during torsion
Fig.45	Stress distribution on BioRace file with angle of curvature 30 degree and radius 5 mm during simulation of continuous rotation motion

Fig.46				O	
	curvature 30 deg	ree and ra	dius 5 mm du	ring simulation	on
	of	continu	ous	rotati	on
	motion			92	
Fig.47	Distribution on B		O		
	degree and radius rotation	S J IIIII Gu	ing sinurano	n or continuo	us
	motion	•••••		93	
Fig.48	curvature 45 deg	ree and ra	dius 5 mm du	ring simulation	on
	of motion	continu		rotati 93	OII
Fig.49	Stress distribution	on HyFle	x file with an	gle of curvatu	ıre
	30 degree and	radius 5	mm during	simulation	of
	continuous			rotati	on
	motion		• • • • • • • • • • • • • • • • • • • •	96	
Fig.50	Areas of maximum	n stress du	ring simulatio	n of continuo	us
	rotation motion o	f HyFlex f	ïle with angle	of curvature	30
	degree	and	radiı	ıs	5
	mm			96	
Fig.51	Stress distribution	on HyFle	x file with an	gle of curvatu	ıre
	45 degree and	radius 5	mm during	simulation	of
	continuous			rotati	on
	motion			97	

Fig.52	Areas of maximum stress during simulation of continuous						
	rotation mot	ion of HyFle	x file wi	th angle	of curvature	e 45	
	degree	and		radiu	S	5	
	mm	• • • • • • • • • • • • • • • • • • • •			97		
Fig.53		tribution on degree and		-	•		
	of	_	nuous		rota		
	motion			• • • • • • • • • •			
Fig.54	30	ion of OneSh	nape file and	with ang	gle of curva adius		
Fig.55	curvature 45 of	tribution on degree and conti	radius 5 nuous	mm dui	ring simula rota	tion	
Fig.56	45	ion of OneSh	nape file and	with ang	gle of curva adius		
Fig.57		and radius n	5 mm	during	simulation		