

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

FULL - WAVE ANALYSIS OF MICROSTRIP FILTERS USING THE NOVEL METHOD OF LINES

By

Eng. Hossam Abd El Maula Saker Ebraheem

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Essam Abd El Halim Hashish

Dept. of Electronics and Communications Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT August 2003

1-08.

FULL – WAVE ANALYSIS OF MICROSTRIP FILTERS USING THE NOVEL METHOD OF LINES

By

Eng. Hossam Abd El Maula Saker Ebraheem

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Dr. Essam Abd El Halim Hashish , Thesis Main Advisor

Prof. Dr. Esmat Abd El Fatah Abdallah , Member Abdallah

Prof. Dr. Mostafa El Said Mostafa , Member M. Mem

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT September 2003

CONTENTS

CONTENTS	page
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF SYMBOLS	xiii
ACKNOWLEDGEMENT	xvi
ABSTRACT	xvii
Chapter1: Introduction	1
Chapter 2: Microstrip Filters Design and Computation Techniques	4
2.1 Introduction	4
2.2 Theory and design of microstrip filters	6
2.2.1 Maximally flat or Butterworth prototype	7
2.2.2 Chebyshev response	9
2.2.3 LC filter transformations	10
2.2.4 Highpass transformation	11
2.2.5 Bandpass transformation	11
2.2.6 Bandstop transformation	13
2.2.7 RLC – Distributed elements transformation	14
2.3 Microstrip filers	16

2.3.1	Transmission line filters	16
2.3.2	Coupled lines filters	17
2.3.3	Inerdigital filter	18
2.3.4	Combline filters	18
2.3.5	Hairpin –line filter	18
2.3.6	Parallel-coupled line filter	19
2.4	Numerical Techniques	22
2.4.1	Finite element method	22
2.4.2	Moment method	24
2.4.3	Method of lines	26
2.4.3.1	Two dimensional problems	26
2.4.3.2	Three dimensional problems	30
2.4.4	Space spectral domain approach	32
2.4.4.1	Analysis steps	32
Chapte	er Three: Eigenmode Algorithm Based on the	34
Metho	od of Lines and Generalized Transmission-Line	
Equat	ions	
3.1.	Introduction	34
3.2.	Basic equations	38
3.3.	Discretization	40
3.3.1.	Discretization scheme	40
3.3.2	2-D Difference operators	42
3.3.3.	Matrix reduction	43
3.3.3.	Non-equidistant discretizaton	46
3.3.3. 1	One dimensional non-equidistant discretizaton	47

3.3.4.2	Two dimensional non-equidistant discretization	48
3.3.3.3	2-D Non-equidistant difference operator	50
3.3.3.3	Reduced 2-D Non-equidistant difference operator	51
3.3.	Discretized wave equations	51
3.5.	Transformation	52
3.6	Field matching for single discontinuity	52
3.9	Several discontinuities	54
CHAI	PTER FOUR: Characterization of Microstrip Filters	56
Using	the Novel Method of Lines	
4.1	Introduction	56
4.2	Microstrip step discontinuity	57
4.2.1	Basic equations	57
4.2. 2	Numerical solutions	59
4.2.3	Accuracy of the numerical results	59
4.2.3.1	Position of the discretization lines	61
4.2.3.2	Number of discretization lines	62
4.2.4	Numerical results	64
4.3	Step impedance band stop filter	70
4.3.1	Matching equations	70
4.3.2	Computation accuracy	72
4.3.3	Numerical results	72
4.4	Single coupled resonator band stop filter	78
4.4.1	Numerical results	79
4.4.2	Quasi-static approximate solution of a two coupled lines	82
	band stop filter	
4.4.3	Band stop filter charachteristics	84
4.5	Two coupled resonators band-stop filter	90
4.6	Two edge coupled lines	96
4.6.1	Matching equations	96
4.6.2	Numerical results	0.7

