MICROBIAL FERMENTATION TO IMPROVE ELEMENTS AVAILABILITY OF SOME ROCKS FOR AGRICULTURAL APPLICATION

By

ZAHRA HABIB MOHAMED TAYEB

B.Sc.Agric.Sc. (Agric. Microbiology), Ain Shams University, 2010

A thesis submitted in partial fulfillment

of

The requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agricultural
Ain Shams University

2015

Approval Sheet

MICROBIAL FERMENTATION TO IMPROVE ELEMENTS AVAILABILITY OF SOME ROCKS FOR AGRICULTURAL APPLICATION

By

ZAHRA HABIB MOHAMED TAYEB

B.Sc.Agric.Sc. (Agric. Microbiology), Ain Shams University, 2010

This thesis for M.Sc. degree has been approved by:

Dr. Rashed Abdel Fattah Zaghloul Prof. of Agricultural Microbiology, Faculty of Agriculture, Benha University. Dr. Elshahat Mohamed Ramadan Prof.Emeritus of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University. Dr. Hemmat M. Abdelhady Dr. G. Agricultural Microbiology, Faculty of Agriculture, Ain

Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 27/7/ 2015

MICROBIAL FERMENTATION TO IMPROVE ELEMENTS AVAILABILITY OF SOME ROCKS FOR AGRICULTURAL APPLICATION

By

ZAHRA HABIB MOHAMED TAYEB

B.Sc.Agric.Sc. (Agric. Microbiology), Ain Shams University, 2010

Under the supervision of:

Dr. Hemmat M. M. Abdelhady

Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Khadiga A. A. Abou-Taleb

Associate Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Shimaa A. Amin

Lecturer of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Zahra Habib Mohamed Tayeb. "Microbial Fermentation to Improve Elements Availability of Some Rocks for Agricultural Application". Unpublished M.Sc. Thesis, Department of Agric. Microbiology. Faculty of Agriculture, Ain shams University, 2015.

Inorganic phosphate (P) and potassium (K) are more essential macronutrient for the growth and development of plants. Only a small amount of the applied soluble P fertilizer is used by plants and the remainder fraction is hold in soil as insoluble forms. The integration of microbial inoculation with P and K solubilizing microorganisms, and rock P and K materials amendent can improve crop mineral nutrients in nutrient-deficient soils. Therefore, the investigation was designed to study the production fermented solutions of soluble P by local microbial strains in order to use in some agriculture applications.

In the present study, a number of 108 phosphate solubilizing isolates and 20 potassium solubilizing isolates were isolated from different soil samples. Only four isolates were selected as the most efficient phosphate solubilizing isolates on both solid and liquid cultures. Some nutritional and environmental factors affecting the RP solubilization by selected isolates using shake flasks as batch cultures. In a series of experiments on phosphate solubilization, the ingredients of basal med.3 were modified to give the highest phosphate solubilization after 10 or 12 days at 30°C by bacterial and fungal isolates, respectively.

Different treatments of bagasse, corn cobs, black sugar cane molasses, olive cake wastes, rice straw, sugar beet waste and whey were used as a sole carbon source at different treatments for highest phosphate solubilization by tested isolates. The maximum RPs activity was obtained by bacterial and fungal isolates in sugar beet waste and whey as whole media supplemented with 7.0 and 10.0 gL⁻¹ RP at pH 7.0 and 5.5 after 10 and 12 days at 30°C which increased RPs content about 1.15 and 3.29 fold comparing to med.3, respectively.

The most efficient RP solubilization isolate was identified with 18S rDNA gene sequencing to close the gene sequencing of Aspergillus tubingensis USMI03. The fermented solution of this strain contains the highest concentration of citric acid, indole acetic acid (IAA) and elements as well as phosphatase activity. This solution was applied as mineral source for microbial growth and a phosphate fertilized of bean plants cultivation. Using the fermented solution as mineral source (supplemented with sucrose) increased the growth of Aspergillus sp., Pencillium sp. and Tricoderma sp. about 1.94, 1.53 & 1.33 fold comparing with that obtained by Czapek's Dox media after 4 day incubation period at 30°C using shake flasks as a batch culture. Foliar spray by un-filtrated fermented solution at 197.01 µgP ml⁻¹ increased the plant hight, yield and P content about 2.53, 1.97 and 2.87 fold after 45 days harvest period comparing to control treatment irrigated with Hoagland solution only, suggesting its potential use a P fertilizer.

Keywords: Phosphate solubilizing microorganisms (PSMs), potassium solubilizing microorganisms (KSMs), Serratia sp, Aspergillus tubingensis, batch culture, Rock phosphate, bean plant, growth improvement, fermented solutions.

ACKNOMLEDGMENT

Praise and thanks be to **ALLAH**, the most merciful for assisting and directing me to the right way.

The author to express her deepest gratitude to principal supervisor **Prof. Dr. Hemmat Mohamed Mohamed Abdelhady,** Prof. of Agric. Microbiology, Dept. of Microbiology, Faculty of Agric., Ain Shams University, for constructive criticism of the manuscript, close guidance and keen interest.

Thanks also due to **Dr. Khadiga A. A. Abou-Taleb,** Associate Prof. of Agric. Microbiology, Dept. of Microbiology, Fac. of Agriculture, Ain Shams University for her invaluable advices, precious assistance and helpful comments on the manuscript.

Special thanks are due to **Dr. Shimaa Abd El-Rauof Amin Ali** Lecturer of Agric. Microbiology, Dept. of Microbiology, Fac. of Agriculture, Ain Shams University for her invaluable assistance so necessary to the accomplishment of this study.

I am indebted to my family and particularly very thankful to my parents for their precious understanding, patience, encouragement and support.

CONTENTS

1. INTRODUCTION
2. REVIEW OF LITERATURE
2.1. Important of phosphate and potassium elements
2.1.1. Phosphorus
2.1.2. Potassium.
2.2. Microorganisms dissolution of insoluble soil minerals P and K
2.2.1. Phosphate solubilizing microorganisms (PSMs)
2.2.2. Potassium solubilizing microorganisms
2.3. Mechanism of microbial mineralization
2.3.1. Production of organic acids
2.3.2. Enzymes
2.3.3. Growth promoting
2.3.4. Siderophores
2.3.5. Exopolysaccharides (EPSs)
2.4. Factors affecting rock phosphate solubilization
2.4.1. Nutritional factors
2.4.1.1. Carbon sources
2.4.1.2. Effect of nitrogen source
2.4.1.3. Agro-industrial residues
2.4.1.3.1. Olive cake waste
2.4.1.3.2. Sugarcane bagasse
2.4.1.3.3. Sugar beet waste
2.4.1.3.4. Rice straw
2.4.1.3.5. Corn cobs
2.4.1.3.6. Molasses
2.4.1.4. Effect of rock concentration in liquid media
2.4.2. Environmental factors
2.4.2.1. Initial pH
2.4.2.2. Incubation temperature

2.4.2.3. Inoculum size	
2.4.2.5. Incubation time	
2.5. Effect of inoculation of P and K solubilizers on plant growth ar	nd
yield	
3. MATERIALS AND METHODS	••
3.1. Samples	
3.2. Microorganisms used	
3.3. Media used	
3.4. Nutrient (Hoagland) solution	
3.5. Seeds	· • • •
3.6. Soils	
3.7. Agro-industrial wastes and by-products	
3.8. Isolation of phosphate and potassium solubilizing	
microorganisms	• • •
3.9. Maintenance of cultures	· • • •
3.10. Standard inoculum	
3.11. Screenings of the most efficient phosphate solubilizing	
microorganisms (PSMs)	
3.12. Identification of phosphate solubilizing microorganisms	
(PSMs)	
3.13. Factors affecting the rock phosphate solubilization	
3.13.1. Carbon sources.	•••
3.13.2. Glucose concentrations	
3.13.3. Nitrogen sources	
3.13.4. Nitrogen concentrations	• • •
3.13.5. Agro-industrial wastes and by-products uses for RP	
solubilization	• • •
3.13.6. Rock phosphate concentrations	• • •
3.13.7. Initial pH	• • •
3.13.8. Inoculum size.	• • •
3.13.9. Incubation temperature	

3.14. Molecular identification of the most efficient tested isolate	by
18S rDNA sequence analysis	
3.14.1. DNA extraction and partial sequencing of 18S rDNA	• • • • • • • • • • • • • • • • • • • •
3.13.2. Phylogenetic analysis	
3.15. Some applications of fermented solution produced	
3.15.1. As mineral source for microbial growth	
3.15.2. As a P fertilizer in green house pot experiment	
3.16. Analytical methods	
3.16.1. Microbial count	
3.16.2. Phosphate concentration	
3.16.3. Potassium concentration	
3.16.4. pH	
3.16.5. Indole acetic acid (IAA) assay	
3.16.6. Citric acid	
3.16.7. Acid phosphatase activity	
3.17. Calculation.	
3.17.1. Phosphate and potassium solubilization Parameters	
3.17.2. Growth and biological activity parameters	
3.18. Statistical analysis.	
4. RESULTS AND DISCUSSION	
4.1. Isolation of phosphate and potassium solubilizing	
microorganisms (PSM & KSM)	
4.2. Quantitative and qualitative determination of the most effici	ent
phosphate solubilizing microorganisms (PSMs)	
4.3. Identification of the most efficient phosphate solubilizing	
isolates	
4.4. Factors affecting rock phosphate (RP) solubilization	
4.4.1. Effect of nutritional requirements	
4.4.1.1. Carbon sources	
4.4.1.2. Glucose concentrations	
4.4.1.3. Nitrogen sources.	
4.4.1.4. Nitrogen concentrations	

4.4.1.5. Use of some agro-industrial wastes and by-products for rock
phosphate solubilization
4.4.1.6. Rock phosphate concentrations
4.4.2. Effect of environmental factors
4.4.2.1. Initial pH
4.4.2.2. Incubation temperature
4.4.2.3. Inoculum size
4.5. Molecular identification of the most efficient fungal isolate of
Aspergillus sp. RPf10 and the phylogenetic tree
4.6. Some properties of produced fermented solutions
4.7. Some application of Aspergillus tubingensis RPf10 fermented
solution
4.7.1. As a mineral source for microbial growth
4.7.2. As nutrient solution for bean plant growth improvement
5. SUMMARY
6. REFERENCE
ARABIC SUMMARY

LIST OF FIGURES

Fig No)		Page
1	The percentages of phosphate solubilizing microorganisms	
	(PSM _S) obtained from different sources	54
2	Soluble rock phosphate content and phosphate solubilization	
	efficiency of bacterial isolates after 10 days incubation period	
	on med.3 using shake flasks as a batch culture	62
3	Soluble rock phosphate content and phosphate solubilization	
	efficiency of fungal isolates after 10 days incubation period	
	med.3 using shake flasks as a batch culture	63
4	Cultural characteristics of Aspergillus sp. Bf6 and RPf10	
	isolates	66
5	Effect of different carbon sources on RP solubilization activity	
	Serratia sp. Rs7 and Serratia sp. Rs22 during 10 days of	
	incubation periods at 30°C on med.3 using shake flasks as a	
	batch culture	70
6	Effect of different carbon sources on RP solubilization activity	
	by Aspergillus sp. Bf6 and Aspergillus sp. RPf10 at during 12	
	days of incubation periods at 30°C on med.3 using shake	
	flasks as a batch culture	71
7	Effect different glucose concentrations (gL ⁻¹) on RP	
	solubilization activity by Serratia sp. Rs7 and Serratia sp.	
	Rs22 during 10 days of incubation periods at 30°C on med.3	
	using shake flasks as a batch culture	75
8	Effect different glucose concentrations (gL ⁻¹) on RP	
	solubilization activity by Aspergillus sp. Bf6 and Aspergillus	
	sp. RPf10 during 12 days of incubation periods at 30°C on	
	med.3 using shake flasks as a batch culture	76
9	Effect of different nitrogen sources on RP solubiziation	
	activity by Serratia sp. Rs7 and Serratia sp. Rs22 after 8 days	
	on med.3 at 30°C using shake flasks as a batch culture	83

10	Effect of different nitrogen sources on RP solubiziation activity by <i>Aspergillus</i> sp. Bf6 and <i>Aspergillus</i> sp. RPf10 after	
11	10 days on med.3 at 30°C using shake flasks as a batch culture Effect of different yeast extract concentrations (gL ⁻¹) on RP solubilization activity by isolates of <i>Aspergillus</i> sp. Bf6 and <i>Aspergillus</i> sp. RPf10 during 12 days of incubation periods at	84
12	30°C using shake flasks as a batch culture	87
13	Serratia sp. Rs22 during 10 days of incubation periods at 30°C using shake flasks as a batch culture	90
14	using shake flasks as a batch culture	100
15	using shake flasks as a batch culture	101
16	at 30°C using shake flasks as a batch culture	109
17	days at 30°C using shake flasks as a batch culture Effect of different concentrations of RP on the solubilization activity of RP by <i>Aspergillus</i> sp. Bf6 and <i>Aspergillus</i> sp. RPf10 isolates after 12 days incubation period at 30°C on sugar beet waste medium using shake flasks as a batch	110
	culture	114

18	Effect of different concentrations of RP on the solubilization	
	activity of RP by Serratia sp. Rs7 and Serratia sp. Rs22	
	isolates after 10 days incubation period at 30°C on whey	
	medium using shake flasks as a batch culture	117
19	Effect of different temperatures on RP solubiziation activity	
	by Serratia sp. Rs7and Serratia sp. Rs22 isolates during 10	
	days on whey medium using shake flasks as a batch culture.	125
20	Effect of different temperatures on RP solubiziation activity	
	by Aspergillus sp. Bf6 and Aspergillus sp. RPf10 isolates after	
	12 days on sugar beet waste medium using shake flasks as a	
	batch culture	126
21	Effect of different inoculum sizes on RP solubiziation activity	
	by Serratia sp. Rs7 and Serratia sp. Rs22 isolates of	
	incubation period at 30°C on whey medium using shake flasks	
	as a batch culture	130
22	Effect of different inoculum sizes on RP solubiziation activity	
	by Aspergillus sp. Bf6 and Aspergillus sp. RPf10 isolates after	
	12 days of incubation period at 30°C on sugar beet waste	
	medium using shake flasks as a batch culture	132
23	Agarose gel analysis of PCR amplification product using 18S	
	rDNA primers for Aspergillus sp. RPf10 isolate	134
24	Phylogenetic tree showing the relationship between the fungal	
	isolate Aspergillus sp. RPf10 (unknown) and related	
	ascomycetes from NCBI database upon neighbor joining	
	analysis of partial 18S rDNA sequences	135
25	Phosphatase activity, citric acid and IAA production by	
	Aspergillus tubingensis RPf10, Aspergillus sp. Bf6, Serratia	
	sp. Rs22 and Serratia sp. Rs7	137
26	Growth curves of tested bacterial culture grown on nutrient	
	broth and nutrient glucose broth as well as Aspergillus	
	tubingensis RPf10 fermented solution as a whole medium or	
	supplemented with glucose during 36 hours at 30°C using	142

	shake flasks as a batch culture	
27	Growth curves of tested yeast culture grown on yeast malt	
	broth and yeast extract malt extract broth as well as	
	Aspergillus tubingensis RPf10 fermented solution as a whole	
	medium or supplemented with glucose during 72 hours at	
	30°C using shake flasks as a batch culture	143
28	Specific growth rate (h ⁻¹) and doubling time (t _d) of tested	
	bacterial and yeast isolates grown on different media and	
	fermented solution treatments using shake flasks as a batch	
	culture	144
29	Growth curves of tested fungal culture grown on malt and	
	Czapek's Dox media broth as well as Aspergillus tubingensis	
	RPf10 fermented solution as a whole medium or	
	supplemented with glucose during 36 hours at 30°C using	
	shake flasks as a batch culture	148
30	Specific growth rate (h ⁻¹) and doubling time (t _d) of tested	140
	fungal isolates grown on different media and fermented	
		149
31	solution treatments using shake flasks as a batch culture	149
J1	The parameters of bean plant growth as affected by different	
	irrigation treatments with water (T1), Hoagland solution (T5),	
	Hoagland free P (T2), filtrated and non-filtrated solution at	
	197.01 + Hoagland free P (T3) & (T4) or complete Hoagland	
	solution (T6) & (T7), respectively after 45 days harvest	
	period	156