INTERLEUKIN 1 \beta in HUMAN COLOSTRUM in

RELATION to NEONATAL JAUNDICE

Protocol Oof Thesis

Submitted for partial fulfillment of M. Sc. Degree in Pediatrics

By

Ghadeer Ali Ezzat Ali

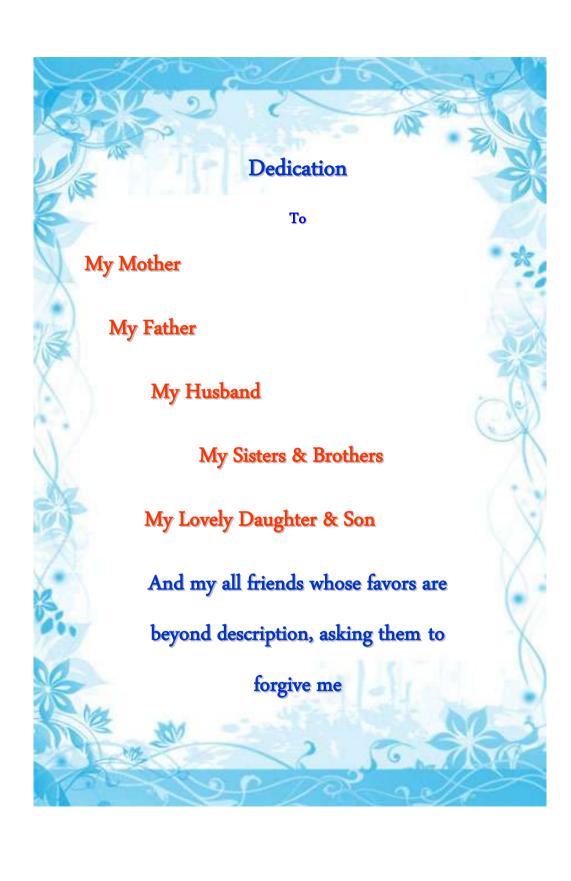
(MB., B.Ch)
Ain Shams University

Supervised By

Dr. / Lerine Bahy El Din

Assistant Professor of Pediatrics Faculty of medicine—Ain Shams University

Dr. / Safaa Shafik Emam


Assistant Professor of Pediatrics
Faculty of medicine -Ain Shams University

Dr. / Dina Ahmed Soliman

Lecturer of Clinical and Chemical Pathology Faculty of medicine -Ain Shams University

> Faculty of medicine Ain- Shams University 2009

Acknowledgement

First of all, thanks to Allah, the Most Gracious, Most Merciful, for any success in achieving any work in my life, and for guiding me through and giving me the strength to complete this work the way it is.

It is a great pleasure to express my deepest thanks and profound respect to my honored **Dr. / Lerine Bahy El Din**, Assistant Professor of Pediatrics, Faculty of medicine Ain-Shams University for her continuous encouragement and valuable supervision and guidance throughout this work. It has been an honor and privilege to work under her generous supervision.

Words fail to express my sincere thanks and appreciation to **Dr/ Safaa shafik Emam**, Assistant Professor of Pediatrics, Faculty of Medicine Ain Shams University for her generous encouragement, valuable suggestion, good support, meticulous continuous supervision and unlimited help during this work. I wish to be able one day to return her part of what she had offered to me.

I am also deeply grateful and I would like to express my sincere thanks and gratitude to **DR.** /**Dina Ahmad Soliman**,

Lecturer of clinical and chemical pathology Faculty of Medicine Ain Shams University, for her great help and support and her continuous guidance, correction and explanation.

Last but not least I would like to express my endless gratitude to my dear neonates and their mothers. Without their help we would not have been able to complete this work.

List of Abbreviations

AA arachidonic acid

ASBT apical sodium- dependent bile acid transporters

APR acute phase reactant

BMJ breast milk jaundice

COPD chronic obstructive pulmonary disease

CRP c-reactive protein

CTL cytotoxic T lymphocyte

COX2 cyclo-oxygenase 2

CNS central nervous system

CS cesarean section

DHA docosahexaenoic acid

DC denteritic cell

DPD 2,5 dichloro phenyl diazonium

EPA eicosa-pentaenic acid

EP epinephrine

EGF epidermal growth factor

FA fatty acid

FHF fulminant hepatic failure

G6PD glucose-6-phosphate dehydrogenase enzyme

GA gestational age

IDDM insulin dependent diabetes mellitus

IL-1β interleukin beta

IL1RA interleukin-1 receptor antagonist

ICE interleukin -1 converting enzyme

Ig immunoglobulin

LCH langerhans cell histiocytosis

LPUFAs long chain poly-unsaturated fatty acids

MS multiple sclerosis

MHC major histocompatibility complex

NFKB nuclear factor kappa B

NPY neuropeptide y

NJ neonatal jaundice

NE norepinephrine

PGE2 prostaglandine E2

RBCs red blood cells

TGF β transforming growth factor β

TcB trans-cutaneous bilirubinometer

TSB total serum bilirubin

TNF tumour necrotic factor

Th2 T helper 2 lymphocyte

UDPGT uridine diphosphate – glucuronyl transferase

Ws weeks

Wt weight

List of tables

N	o. Title	Page	
Review:			
1.	Some cytokines and their activities	18	
2.	Laboratory evaluation of jaundiced infant 35 or more ws of gestation	48	
3.	Bilirubin / Albumin ratio above which exchange transfusion should be considered	58	
4.	Guidelines for exchange transfusion in neonates with haemolytic disease	58	
Results:			
1.	Descriptive data for all study groups	69	
2.	Descriptive data for non-jaundiced group	71	
3.	Descriptive data for jaundiced group	72	
4.	IL1 β correlation to other variables in jaundiced group	73	
5.	IL1 β correlation to other variables in non jaundiced group	73	
6.	Correlations of the variables among all studied cases and controls	74	
7.	Correlation of parity to other variables	74	

8.	Correlation of IL1 β to other variables in all study groups	75
9.	Correlation of neonatal wt to other variables	75
10.	Correlation of neonatal GA to other variables	75
11.	Correlation of apgar score at 1min. to other variables	76
12.	Correlation of apgar score at 5min. to other variables	76
13.	Correlation of neonatal TSB to other variables	77
14.	Comparison between both study groups regarding different quantitative variables	86

List of Figures

No.	Title	Page	
Review:			
1.	Risk designation of term and near term infant based on their hour specific bilirubin values	45	
2.	Classification of jaundice due to mainly unconjugated hyperbilirubinemia	47	
3.	Schematic approach to diagnosis of neonatal jaundice	52	
4.	Algorithm for the management of jaundice in the newborn nursey	54	
5.	Guidelines for phototherapy of 35 weeks of gestation newborn	59	
Results:			
1.	Male to female ratio in all study groups	70	
2.	Scatter diagram showing relation between IL1β and mother age	77	
3.	Scatter diagram showing relation between IL1β and TSB	78	
4.	Scatter diagram showing relation between IL1β and mother age in non-jaundice group	79	

5.	Scatter diagram showing relation between IL1β and GA in non-jaundiced group	79
6.	Scatter diagram showing relation between IL1β and mother age in jaundice group	80
7.	Scatter diagram showing relation between IL1β and apgar score at 1min. in jaundiced group	81
8.	Scatter diagram showing relation between mother age and TSB	82
9.	scatter diagram showing a positive correlation between neonatal GA and neonatal TSB	83
10.	Scatter diagram showing relation between apgar score at 1 and 5 min.	84
11.	Scatter diagram showing relation between apgar score at 1min and at 5min	85
12.	Comparison between two study groups regarding level of IL 1 β in breast milk	87
13.	Comparison of neonatal TSB level between both groups	88
14.	Comparison of apgar score at 1min between both groups	88

List of Contents

No.	Title	Page
1.	Introduction	1
2.	Aim of the work	4
Review of literature		
3.	Breast Milk	5
4.	Neonatal jaundice	32
5.	Subjects and methods	61
6.	Results	69
7.	Discussion	89
8.	Summary and Conclusion	101
9.	Recommendations	104
10.	References	105
11.	Appendix	132
12.	Arabic Summary	

Introduction

Breast—fed infants have higher bilirubin levels than formula-fed infants. The jaundice of breast—fed infants is commonly of undetermined etiology. Suggested mechanisms for these findings include insufficient milk transfer to the neonate inhibition of hepatic excretion of bilirubin, and increased intestinal absorption of bilirubin (Bertini et al., 2001).

Inhibition of hepatic excretion of bilirubin could explain the jaundice associated with human milk consumption, and early studies suggested that exposure to acquired cholestatic injury such as drugs, hormones, proinflamatory cytokines, or biliary obstruction or destruction results in an altered expression and function of hepatic uptake and excretory systems, changes that may maintain and contribute to cholestasis and jaundice. In particular, increased production of IL8 and IL10 has been reported in patients with biliary obstruction and jaundice (**Trauner et al.,2005**).

Moreover the cholestatic effect of cytokines (IL1 β ,IL6) is believed to result from the repression of genes that normally mediated the hepatic uptake, metabolism, and biliary excretion of bile salts and various nonbile salt organic anions such as bilirubin. In addition IL1 α ,IL6, and tumor necrosis factor were found to decrease the glucuronidation activities dose dependently (**Bolder et al.,1997**).

Intestinal absorption is a key step in the enterohepatic circulation of bilirubin because bilirubin is more easily absorbed from intestine than are bilirubin glucuronides. Increased intestinal absorption of bilirubin, facilitated by breast milk rich in β -glucuronidase or via some other mechanisms such as delayed passage of meconium, the establishment of a population of intestinal bacteria that converts bilirubin glucuronides to various urobilinoids and therefore reduces the availability of bilirubin for intestinal absorption, and casin hydrolysates that inhibit β -glucuronidase in the intestine currently appear to be another likely mechanism that explain neonatal jaundice associated with breast-feeding (**Gourley,1998**).

Several studies have shown that enterocytes can constitutively express pro-inflamatory cytokines, and this response is up-regulated by inflammatory stimuli such as endotoxin and IL1 β . Although cytokines are known to play a critical role both in the function of hepatie uptake and excretory systems and in the enterohepatic circulation, little is known concerning their concentrations and associations within breast milk of mothers feeding, neonates with neonatal jaundice (Gourley,2002).