BIOLOGICAL CHARACTERISTICS OF SOME MICROBES CONTRIBUTING IN BIOFILM FORMATION

 $\mathbf{B}\mathbf{v}$

Bahaa El-Din Ahmed Mohamed Hemdan

B.Sc. Agric. Sci. (Microbiology), Fac. Agric., Zagazig Univ., 2004 M.Sc. Agric. Sci. (Microbiology), Fac. Agric., Ain Shams Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Cairo University
EGYPT

2015

APPROVAL SHEET

BIOLOGICAL CHARACTERISTICS OF SOME MICROBES CONTRIBUTING IN BIOFILM FORMATION

Ph.D. Thesis
In
Agric. Sci. (Agricultural Microbiology)

 $\mathbf{B}\mathbf{y}$

Bahaa El-Din Ahmed Mohamed Hemdan

B.Sc. Agric. Sci. (Microbiology), Fac. Agric., Zagazig Univ., 2004 M.Sc. Agric. Sci. (Microbiology), Fac. Agric., Ain Shams Univ., 2011

APPROVAL COMMITTEE

Dr. Mohamed Farouk Ghaly			
Professor of Microbiology Dept., Fac. Sci., Zagazig Un	iversity		
Dr. Mohamed AbdEl-Aleem Ali			
Professor of Agricultural Microbiology Dept., Fac. Ag	ric., Cairo Uni	iversi	ty
Dr. Mohamed Zakaria Sedik			· · ·
Professor of Agricultural Microbiology Dept., Fac. Ag	ric., Cairo Uni	iversi	ty
	Date:	/ /	2015

SUPERVISION SHEET

BIOLOGICAL CHARACTERISTICS OF SOME MICROBES CONTRIBUTING IN BIOFILM FORMATION

Ph.D. Thesis
In
Agricultural Sci. (Agricultural Microbiology)

By

Bahaa El-Din Ahmed Mohamed Hemdan

B.Sc. Agric. Sci. (Microbiology), Fac. Agric., Zagazig Univ., 2004 M.Sc. Agric. Sci. (Microbiology), Fac. Agric., Ain Shams Univ., 2011

SUPERVISION COMMITTEE

Dr. Mohamed Zakaria Sedik Professor of Agricultural Microbiology Dept., Fac. Agric., Cairo University

Dr. Mohamed Mohamed Kamel
Researcher Professor of Water and Wastewater Microbiology, NRC

Name of Candidate: Bahaa El-Din Ahmed Hemdan Degree: Ph.D.

Title of Thesis: Microbiological Characteristics of Some Microbes Contributing in

Biofilm Formation.

Supervisors: Dr. Mohamed Zakaria Sedik

Dr. Mohamed Mohamed Kamel

Department: Agricultural Microbiology **Branch**:

Approval: / /2015

ABSTRACT

The aims of this study were to determine microbial population contributing in natural biofilm. In addition to, study the behavior and biological characteristics of two pathogenic bacteria including L. monocytogenes and S. Typhimurium in biofilm state. To achieve first aim, forty eight natural biofilm samples were collected from different types of microhabitats to determine the characteristics of the predominant microorganisms. The results of natural biofilm samples showed that the most frequent pathogens were Staph. aureus, L. monocytogenes, Salmonella spp and Candida albicans in all tested samples. While, to achieve second aim, water distribution system model was designed for testing of these bacteria. Six samples of synthetic biofilm were collected at three different biofilm ages (10, 40 and 90 days-old). The collected biofilm samples were exposed to different antimicrobial agents. Results cleared that the highest growth of L. monocytogenes and S. Typhimurium biofilm was reported in I pipe material. Results showed the log reduction of 90 days-old L. monocytogenes biofilm formation, when exposed to 3.0 mg/l of chlorine dose, on six pipe materials; PVC, PP, PE, I, Cu and R been 3.96, 4.16, 4.21, 4.17, 4.32 and 4.03 CFU/cm², respectively. While, the effective MICs of Ag ions were 500 mg at 5 min against 90 days-old L. monocytogenes and 300 at 15 min for S. Typhimurium biofilm. Additionally, the effective MICs of AgNPs were recorded 500 mg at 15 min for 90 days-old L. monocytogenes and 500 mg at 10 min for S. Typhimurium. On the other hand, the results of antibiotic susceptibility indicated the planktonic cells were more sensitive than the biofilm cells. Also, the longest survival time in tested water of L. monocytogenes and S. Typhimurium biofilm cells scraped from I pipe material was observed. In contrast, the shortest survival time of biofilm cells scraped from Cu pipe material was recorded.

Key words: Biofilm, pathogenic microbes, EPS, chlorine, AgNPs, antibiotics.

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my mother, my wife and my son (Mazen), for their patience, help and for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

Praise and thanks be to ALLAH, for assisting and directing me to the right way.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr.** Mohamed Z. Sedik, Professor of Agric. Microbiology, Faculty of Agriculture, Cairo University. Also, **Dr.** Gamila El-Sayed El-Taweel, **Dr.** Mohamed M. Kamel and **Dr.** Shawky El-Hawaary Researcher Professors of Water and Wastewater Microbiology, NRC, for suggesting the problems, supervision, continued assistance and their guidance through the course of study and revising the manuscript.

Deep appreciation is given to the **Dr. Gamila H. Ali**, Researcher Professor of Hydrobiology, NRC, for helping and supporting me in chlorine experiment and manuscript revision in my study.

Also, **Dr. Hisham Essawy**, Researcher Professor of Polymers, NRC for helping me in synthetic and characterization of silver nanoparticles in my study. **Dr. Mohamed Azab El-Liethy**, Researcher of Water and Wastewater Microbiology, NRC, for helping and supporting in practical parts and manuscript revision.

Grateful appreciation is also extended to all staff members of Environmental Microbiology Lab., Water Pollution Research Dept., NRC and Agricultural Microbiology Dept., Faculty of Agriculture, Cairo University.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
1. Drinking water needs and concern
2. Drinking water quality assessment- microbiologica aspects and biofilm
3. Biofilm in drinking water distribution systems
4. Composition of extracellular polymeric substances (EPS and its roles in biofilm formation
5. Outbreaks of biofilm formation in drinking water distribution system
6. Stages of biofilm formation
7. The Effects and problems of biofilm formation on the water quality
8. Factors affecting on biofilm growth in DWDS
9. Biofilm prevention and control in drinking water distribution systems
10. Behavior of some bacterial strains for biofilm formation in DWDS model
11. Quantification of biofilm in DWDS models
MATERIALS AND METHODS
RESULTS AND DISCUSSION
CONCLUSIONS
SUMMARY
REFERENCES
APPENDIX
ARABIC SUMMARY

INTRODUCTION

Drinking water distribution systems (DWDS) are complicated engineering systems consisting of pipes, storage vessels, fittings, and valves. DWDS are made of a variety of different materials such as cast iron, polyvinyl chloride (PVC) and polyethylene (PE) that interact with the bulk water. The water that consumers drink at the tap has traveled potentially large distances taking significant durations through the distribution network and it is accepted that from leaving the treatment plant deterioration in quality might occur. This deterioration in water quality will be influenced by factors such as decay of disinfectant residual, temperature, hydraulic regime, water residence time and bacterial regrowth (Ramos *et al.*, 2010).

The supply of safe drinking water to the public is one of the great technological advancements of the 19th century, as well as a major technological challenge (Poitelon *et al.*, 2009). It is well known that microorganisms are widely present in the drinking water treatment systems especially, in the storage tanks, filter systems, and the interior of pipe walls (Bonadonna *et al.*, 2009).

Uncontrolled and excessive microbial growth not only leads to the deterioration of water quality and the associated undesirable tastes, odors, and visual turbidity, but can also cause process malfunctioning such as clogging of filters, biofouling and biocorrosion (Hammes *et al.*, 2008). Additionally, many problems in DWDS can be associated with