

Faculty of Science
Physics Department

Investigation of Solid State Reaction in Silver/Tin Nanostructured Thin Films

A Thesis

In Partial Fulfillment of the Requirements of the Degree of M.Sc. in physics

Submitted to Faculty of Science-Ain Shams University

By Nora Samy Sdky Mohareb B.Sc. Ain Shams University (2012)

Supervised by

Prof. Dr. Mohamed Hassan Talaat

Prof. Dr. Dezső Laszlo Beke

Physics Department, Faculty of Science, Ain Shams University, Egypt. Solid-State Physics Department, Faculty of Science and Technology, Debrecen University, Hungary

Prof. Dr. Madeha Fadel

Physics Department, Faculty of Education, Ain Shams University, Egypt.

Faculty of Science
Physics Department

Degree : Master of Sciences (Physics).

Title : Investigation of Solid State Reaction in

Silver/Tin Nanostructured Thin Films.

Name : Nora Samy Sdky Mohareb.

Faculty of Education,

Ain Shams University, Cairo, Egypt.

Thesis Supervisors	Approved
1. Prof. Dr. Mohamed Hassan Talaat	•••••
Professor of Physics,	
Faculty of Science,	
Ain Shams University, Cairo, Egypt.	
2. Prof. Dr. Dezső Laszlo Beke Professor of Physics,	•••••
Faculty of Science and Technology,	
Debrecen University, Debrecen, Hungary	
3. Prof. Dr. Madeha Fadel	•••••
Professor of Physics,	

<u>Acknowledgement</u>

Before and above all, all thanks to Allah, the lord of all beings.

My very deep gratitude goes to Prof.Dr. Salah Yaseen El-Bakry, chairman of the Physics Department for his interest fruitful comments, support, and encouragement.

It is a genuine pleasure to express my deep sense of thanks to Prof.Dr. Dezső Beke and Prof.Dr. Suzan Fouad for their great efforts in the agreement and their encouragement.

I would like to express my all thanks to Prof.Dr. Aly Al-Gamal and Prof.Dr. Said Khalil, the previous and the current Dean of Faculty of Education Ain Shams University respectively for their help and support. Also all thanks to Prof.Dr. Adel Fawzy and Prof.Dr. Mahmoud Yassin, the previous and the current Head of Physics Department, Faculty of Education, Ain Shams University, respectively for their support and help.

I am deeply indebted to my great supervisors who were always standing with me during this work:

- **Prof.Dr. Hassan Talaat**, for his great scientific advices, helpful guidance, interesting discussion and valuable comments during revising the research.
- **Prof.Dr. Dezső Beke**, for his interesting lectures, discussions, valuable scientific comments during the experimental work, his continuous supervision after returning Egypt and in addition his kind and helpful character.
- **Prof.Dr. Madeha Fadel**, for continuous supervision, valuable suggestions, encouragement and interesting discussion during the whole period of the research.

I would also like to thank Dr. Shenouda Shanda Shenouda, for his advices and helpful guidance throughout the experimental part of the thesis.

Thanks to all members of the ATOMKI laboratory and the Solid-State Physics Department, Debrecen University, Hungary for their laboratory facilities, guidance, and kind helps in different ways.

Also, thanks to members of the Semiconductor Laboratory, Faculty of Education, Ain Shams University for their helping.

Most importantly, Thanks to my parents for their continuous encouragement and supporting me. Thanks to my brothers and my sisters for helping me.

contents

p	age
List of Figures	I
List of Tables	V
Abstract	.VI
Summary	VII
Introduction	1
CHAPTER (1): THEORITICAL BACKGROUND AND LITERATURE REVIEW	
A- THEORETICAL BACKGROUND	.6
1.1. Fick's Equations.	.6
1.2. Expressions for atomic fluxes from first principles and atomic interpretation.	
1.2.1 Expression for Atomic Fluxes	8
1.2.2 Atomistic Interpretation	10
1.3. Solid State Reactions1	.1
1.4. Types of Diffusion	15
1.4.1. Bulk Interdiffusion	16
1.4.2. Grain Boundary Diffusion	19
1.4.2.1. Fisher's model	20
1.4.2.2. Diffusion regimes in polycrystals	21
1.5. Solid state reaction in the presence of GBs, DIGM, DIR2	22
B. LITERATURE REVIEW	28

CHAPTER (2): EXPERIMENTAL TECHNIQUES	
2.1. Preparation of Ag/Sn thin film samples.	40
2.1.1. Cleaning of substrates	40
2.1.2. The method of Ag/Sn thin film Preparation	40
2.2. Measuring the film thickness by using the profilometer	
technique	43
2.3. The experimental techniques used to investigate the solid-	
state reactions in the Ag/Sn thin film system	45
2.3.1. Secondary Neutral Mass Spectrometry (SNMS)	45
2.3.2. X-Ray Diffraction (XRD) pattern	49
<u>CHAPTER (3): RESULTS</u>	51
CHAPTER (4): DISCUSSION	6
<u>Conclusion</u>	80
<u>References</u>	82
Published paper	

Arabic summary

List of Figures

Page
Fig. (a): Phase diagram of Ag/Sn system
Fig. (1.1): (a) The migration of atoms or molecules, (b) Illustration of the solutions of Fick's second law at different times
Fig. (1.2): Jump frequencies between neighbouring planes (1, 2) when only the concentration veries and when an external potential field is applied
Fig. (1.3): Intermetallic phases formed applying to schematic diagram.
Fig. (1.4): Schematic illustration of the order of magnitude of different diffusion coefficients D versus the inverse temperature relative to melting temperature T _m /T (Arrhenius diagram)
Fig. (1.5): Atomic currents J _A and J _B (a) and the result of interdiffusion (b) schematically in an AB diffusion couple, for the definition of the Matano plane
Fig. (1.6): Illustration of Fisher's model
Fig. (1.7): Schematic illustration of Harrison's diffusion regimes21
Fig. (1.8): The growth of the phases, (a) the parallel growth in the volume diffusion, (b) the perpendicular growth along the GBs and their corresponding concentration-depth profiles.

E d	chematic diagram of (a) the new grains which formed by DIR process, (b) grain boundary bulging which occurs uring early stages of DIGM. (Diffusion direction is
p	erpendicular to the paper)25
	Diffusion and formation of reaction layers around GBs in an A/B thin film, schematically. A and B are blue (dark grey) and green (light grey) and the reaction layers are in light blue (lighter grey) and red (darker grey), respectively. (Bimodal GB network)
-	a) Mechanism of the sputtering process, (b) Dc Magnetron puttering machine42
	a) AMBIOS XP-1 profilometer (b) and a measured linear epth profile
Fig. (2.3): S	chematic figure of the profilometer measurement44
Fig. (2.4): S	NMS versus SIMS working principle46
<i>Fig.</i> (2.5): T	The INA-X (SPECS GmbH Berlin) SNMS system47
Fig. (2.6): T	The INA-X (SPECS GmbH Berlin) SNMS machine48
0	thenomenon of diffraction for two different incident angles in a crystalline structure (complete constructive interference)
sa	Concentration-depth profiles of Sn(50nm)/Ag(50nm)/SiN ample at room temperature in the as-deposited state, and at fferent times
sa	Concentration-depth profiles of Sn(50nm)/Ag(150nm)/SiN ample at room temperature in the as-deposited state and at fferent times
Sı	Concentration-depth profiles for the as-deposited n(50nm)/Ag(100nm)/SiN sample; (a) concentration-depth rofile, and (b) its XRD pattern

Fig. (3.4): Concentration-depth profiles of Sn(50nm)/Ag(100nm)/SiN sample with increasing ageing time at room
temperature
Fig. (3.5): (a) Concentration-depth profile of Sn(50nm)/Ag(100nm)/SiN sample, and (b) its XRD pattern; at room temperature after 2520 h
Fig. (3.6): Concentration-depth profile of Sn(50nm)/Ag(100nm)/SiN sample after 1 year at room temperature59
Fig. (3.7): (a) Concentration-depth profile in the as-deposited Sn(100nm)/Ag(200nm)/SiN sample, and (b) its XRD pattern
<i>Fig.</i> (3.8): Concentration-depth profile for Sn(100nm)/Ag(200nm)/SiN sample at different times at room temperature
Fig. (3.9): Concentration-depth profile for Sn(100nm)/Ag(200nm)/SiN sample after 168 h at room temperature in(a), and (b) its XRD pattern
Fig. (3.10): Concentration-depth profile for Sn(100nm)/Ag(200nm)/SiN sample at room temperature after (a) 504h and (b) 1200h63
Fig. (3.11): Concentration-depth profile for Sn(100nm)/Ag(200nm)/SiN sample after 9 months at room temperature
Fig. (4.1): Sketch of diffusion mixed zone of Sn (light green) and Ag (light blue) films forming Ag ₃ Sn (red) for as-deposited and aged samples at room temperature (black lines illustrate the GBs in Ag ₃ Sn). The ageing time increases from (a) to (d)
Fig. (4.2): Schematic for growing Ag ₃ Sn by the interface shift of the Ag GBs consuming the Ag grains

Fig. (4.3)	: Dependence of the average concentration, C_{Sn}/C_e , of Sn on
	the ageing time at room temperature at different depths for
	Ag(100nm)/Sn(50nm) sample (the insert shows the first,
	linear part)
Fig. (4.4)): Dependence of the average concentration, C_{Sn}/C_{e} , of Sn on
	the ageing time at room temperature at depth 130 nm for
	Ag(100nm)/Sn(50nm) sample (the insert shows the
	first, linear part)71
Fig. (4.5)	: Estimation of the thickness of the growing phase by the use
	of the composition band corresponding to the concentration
	range (A-B) of existence of the Ag ₃ Sn phase
Fig. (4.6)	For Ag(100nm)/Sn(50nm) sample: (a) Log(x) versus Log(t)
	(the insert shows the first linear part which provides the value
	of n), (b) Thickness of the phase versus square root of time
	(parabolic law) at room temperature (provides the value of
	k)74
Fig. (4.7)	: Dependence of the average concentration C_{Sn}/C_e on the
	ageing time in Ag-side at room temperature at different
	depths for Ag(200nm)/Sn(100nm) sample. The inserts show
	the initial (linear) parts of the curves
Fig. (4.8)	: Dependence of the average concentration C_{Ag}/C_e on the
	ageing time in Sn-side at room temperature at different
	depths for Ag(200nm)/Sn(100nm) sample. The inserts show
	the initial (linear) parts of the curves
Fig. (4.9)	For Ag(200nm)/Sn(100nm) sample: (a) Log(x) versus Log(t)
	(the linear part of this relation provides the value of n) (b)
	Thickness of phase versus square root of time (parabolic law)
	at room temperature 78

List of Tables

Pag	ze
Table (4.1): Comparison between velocities of the interface and initial	
grain size of Ag at different depths for	
Ag(100nm)/Sn(50nm) sample72	2
Table (4.2): Comparison of the interface velocities and initial grain size of Ag and Sn at different depths for Ag(200nm)/Sn(100nm) sample)
Table (4.3): Comparison of the interface velocities for different	
samples)

ABSTRACT

Name : Nora Samy Sdky Mohareb

Title : Investigation of solid state reaction in Silver/Tin

nanostructured thin films

Submitted to: Faculty of Science, Ain Shams University.

The present thesis is devoted to investigate the solid-state reaction in the nanoscrystalline Ag/Sn thin film system at room temperature (at about 298K). The investigation includes:

- 1. The different individual film thicknesses of Ag/Sn system were prepared by Direct Current (DC) magnetron sputtering instrument.
- **2.** The sputtering rates were calculated from the layer thickness measured by profilometer technique.
- **3.** The structure identification of the samples was investigated by X-ray diffraction (XRD) patterns.
- **4.** The elemental composition of the studied samples was measured by Secondary Neutral Mass Spectrometry (SNMS).
- 5. The Analysis of the SNMS profiles including:
 - Studying the kinetics of the mechanisms based on the grain boundary diffusion process.
 - The velocity of the interface by Diffusion-induced grain boundary motion (DIGM) mechanism was calculated.
 - The growth rate of the Ag₃Sn intermetallic phase by Diffusion-induced recrystallization (DIR) mechanism was estimated.

Keywords: GB diffusion; Thin film reactions; Nanostructure.

CHAPTER 1 THEORETICAL BACKGROUND and LITERATURE RECIEW

A. THEORETICAL BACKGROUND

Solid-state reactions in nanostructured thin film systems are interesting not only for technological applications, but are important of pure fundamental research [9]. One of the effective bonding techniques is diffusion soldering based on the interdiffusion process in thin films bilayer and multilayer systems of high-melting and low-melting materials [8]. Transport of material by migration of atoms or molecular entities between two layers, i.e. diffusion (Fig. (1.1a)), is one of the most fundamental, elementary processes in materials and, thus, of great importance to the materials scientist and engineer [32]. Diffusion of atoms in solids can be described by Fick's equations.

1.1. Fick's Equations

The first equation relates the flux (\vec{j}) : number of atoms crossing a unit area per unit time) to the gradient of concentration (ρ) : number of atoms per unit volume) via the diffusion coefficient tensor \widehat{D} :

$$\vec{J} = -\hat{D}grad \rho$$
 (1.1)

In general, the diffusion flux and concentration are function of time and position. In order to be able to determine the diffusion coefficient, it is necessary to take into account the conservation of matter. For not interacting particles, this is the continuity equation:

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \vec{j} = 0 \tag{1.2}$$

Combining equations (1.1) and (1.2), one obtains the second Fick's law (or the diffusion equation):

$$\frac{\partial \rho}{\partial t} = \operatorname{div}(\widehat{D} \operatorname{grad} \rho) \tag{1.3}$$

For cubic crystals and isotropic media, the diffusion coefficient tensor reduces to scalar *D* and if the concentration varies only in the x-direction thus, the first Fick's law is:

$$J_{x} = -D\frac{\partial \rho}{\partial x} \tag{1.4}$$

and second Fick's law reduces to:

$$\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial \rho}{\partial x} \right) \tag{1.5}$$

If, additionally, the diffusion coefficient is independent of the concentration, Eq. (1.5) can be written in the following form:

$$\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} \tag{1.6}$$

From mathematical point of view, Eq. (1.6) is a second order, linear partial differential equation. Initial and boundary conditions are necessary to solve it [33]. Fig. (1.1b) depicts the solution of Fick's second law at different times.

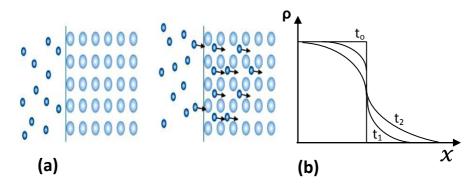


Fig. (1.1): (a) The migration of atoms or molecules, (b) Illustration of the solutions of Fick's second law at different times.

Temperature has a profound influence on the coefficients and diffusion rates. The temperature dependence of the diffusion coefficients is:

$$D = D_0 \exp\left(-\frac{Q_d}{RT}\right) \tag{1.7}$$

where D_0 is a temperature-independent pre-exponential (m²/s), Q_d is the activation energy for diffusion (J/mol), R is the gas constant (8.31 J/mol.K), and T is the absolute temperature [34].

1.2. Expressions for atomic fluxes from first principles and atomistic interpretation

1.2.1 Expression for Atomic Fluxes

According to the second law of thermodynamics, fluxes of extensive quantities are proportional to the gradients of intensive quantities, therefore Fick's first law in A/B binary alloys can be written as: (if the gradients of other intensives than the chemical potential of A atoms are zero)

$$J_{A} = -L_{D}\nabla\mu_{A} \tag{1.8}$$

where L_D is Onsager coefficient, J_A is the atomic flux and μ_A is the chemical potential which has a concentration dependence [35]:

$$\mu_{A}(c) = \mu_{0} + kT \ln \gamma c \tag{1.9}$$

where μ_0 is equilibrium chemical potential of A, k is Boltzmann constant, T is the absolute temperature, γ is the chemical activity coefficient and c is the atomic fraction ($c=N_A/N$), N_A is number of A atoms and N is the total number of atoms. Considering diffusion only along x direction, derivative of μ_A can be expressed as:

$$\frac{\partial \mu_{A}}{\partial x} = \frac{kT}{c} \frac{\partial c}{\partial x} \left(1 + \frac{\partial \ln \gamma}{\partial \ln c} \right) \tag{1.10}$$

The (1.10) equation – using also Eq. (1.8) and Eq. (1.9) can be divided into two parts. The first, conductive term describes the mixing without external driving force, while the second one corresponds to the driving force comprising from chemical interactions (γ is unity for ideal systems):

$$J_{A} = -\frac{D_{B}}{\Omega} \frac{\partial c}{\partial x} - \frac{D_{B}}{\Omega} \frac{\partial \ln \gamma}{\partial \ln c} \frac{\partial c}{\partial x}$$
(1.11)

where $D_B=L_D$ kT/c is the Brownian random walk diffusion coefficient, $D_i=D_B\left(1+\frac{\partial \ln \gamma}{\partial \ln c}\right) \ \text{the intrinsic diffusion coefficient and} \ \Omega \ \text{is the atomic volume}.$ The convective term corresponds to a drift velocity v_d and thus: