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ABSTRACT 
 

Name              : Nora Samy Sdky Mohareb 

Title                : Investigation of solid state reaction in Silver/Tin 

                               nanostructured thin films 

Submitted to  : Faculty of Science, Ain Shams University. 
 
The present thesis is devoted to investigate the solid-state reaction in the 

nanoscrystalline Ag/Sn thin film system at room temperature (at about 

298K). The investigation includes: 

1. The different individual film thicknesses of Ag/Sn system were 

prepared by Direct Current (DC) magnetron sputtering 

instrument. 

2. The sputtering rates were calculated from the layer thickness 

measured by profilometer technique.  

3. The structure identification of the samples was investigated by 

X-ray diffraction (XRD) patterns.    

4. The elemental composition of the studied samples was measured 

by Secondary Neutral Mass Spectrometry (SNMS). 

5. The Analysis of the SNMS profiles including:  

 Studying the kinetics of the mechanisms based on the 

grain boundary diffusion process. 

 The velocity of the interface by Diffusion-induced grain 

boundary motion (DIGM) mechanism was calculated. 

 The growth rate of the Ag3Sn intermetallic phase by 

Diffusion-induced recrystallization (DIR) mechanism 

was estimated.  

      Keywords: GB diffusion; Thin film reactions; Nanostructure.  



Chapter 1                           Theoretical background and literature review 
 

6 
 

CHAPTER 1 

THEORETICAL BACKGROUND and 

LITERATURE RECIEW 

 

A. THEORETICAL BACKGROUND 
 
          Solid-state reactions in nanostructured thin film systems are 

interesting not only for technological applications, but are important of 

pure fundamental research [9]. One of the effective bonding techniques 

is diffusion soldering based on the interdiffusion process in thin films 

bilayer and multilayer systems of high-melting and low-melting 

materials [8]. Transport of material by migration of atoms or molecular 

entities between two layers, i.e. diffusion (Fig. (1.1a)), is one of the 

most fundamental, elementary processes in materials and, thus, of great 

importance to the materials scientist and engineer [32]. Diffusion of 

atoms in solids can be described by Fick's equations. 

1.1. Fick's Equations   

          The first equation relates the flux ( ⃑ : number of atoms crossing a 

unit area per unit time) to the gradient of concentration (ρ: number of 

atoms per unit volume) via the diffusion coefficient tensor  ̂   

 ⃑    ̂                                                    (   )    

          In general, the diffusion flux and concentration are function of 

time and position. In order to be able to determine the diffusion 

coefficient, it is necessary to take into account the conservation of 

matter. For not interacting particles, this is the continuity equation: 
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       ⃑                                                  (   )       

        Combining equations (1.1) and (1.2), one obtains the second Fick's 

law (or the diffusion equation): 

  

  
    ( ̂       )                                       (   )       

          For cubic crystals and isotropic media, the diffusion coefficient 

tensor reduces to scalar   and if the concentration varies only in the x-

direction thus, the first Fick's law is: 

     
  

  
                                                     (   )      

and second Fick's law reduces to: 

  

  
 
 

  
(  

  

  
 )                                              (   )      

          If, additionally, the diffusion coefficient is independent of the 

concentration, Eq. (1.5) can be written in the following form: 

  

  
  

   

   
                                                   (   )       

          From mathematical point of view, Eq. (1.6) is a second order, 

linear partial differential equation. Initial and boundary conditions are 

necessary to solve it [33]. Fig. (1.1b) depicts the solution of Fick's 

second law at different times.  
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Fig. (1.1): (a) The migration of atoms or molecules, (b) Illustration of 

the solutions of Fick's second law at different times.  
 
          Temperature has a profound influence on the coefficients and 

diffusion rates. The temperature dependence of the diffusion 

coefficients is: 

       ( 
  
  
)                                               (   )       

where    is a temperature-independent pre-exponential (m
2
/s),    is the 

activation energy for diffusion (J/mol),   is the gas constant (8.31 

J/mol.K), and T is the absolute temperature [34].   

1.2. Expressions for atomic fluxes from first principles 

and atomistic interpretation           

1.2.1 Expression for Atomic Fluxes  

          According to the second law of thermodynamics, fluxes of 

extensive quantities are proportional to the gradients of intensive 

quantities, therefore Fick's first law in A/B binary alloys can be written 

as: (if the gradients of other intensives than the chemical potential of A 

atoms are zero) 

(a) 

X 

ρ 

t1 

to 

t2 

(b) (a) 
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                                                              (   )         

where    is Onsager coefficient,    is the atomic flux and    is the 

chemical potential which has a concentration dependence [35]: 

  ( )                                                      (   )         

where    is equilibrium chemical potential of  ,    is Boltzmann 

constant,   is the absolute temperature, γ is the chemical activity 

coefficient and   is the atomic fraction (      ),    is number of    

atoms and   is the total number of atoms. Considering diffusion only 

along x direction, derivative of    can be expressed as:  

   
  

 
  

 

  

  
(   

    

    
)                                 (    )         

          The (1.10) equation – using also Eq. (1.8) and Eq. (1.9) can be 

divided into two parts. The first, conductive term describes the mixing 

without external driving force, while the second one corresponds to the 

driving force comprising from chemical interactions ( is unity for ideal 

systems): 

    
  
 

  

  
 
  
 

    

    

  

  
                                         (    )        

where   =LD    /   is the Brownian random walk diffusion coefficient, 

       (   
    

    
)  the intrinsic diffusion coefficient and   is the 

atomic volume. The convective term corresponds to a drift velocity    

and thus: 


