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Abstract

ABSTRACT

- Nora Samy Sdky Mohareb

. Investigation of solid state reaction in Silver/Tin
nanostructured thin films

Submitted to : Faculty of Science, Ain Shams University.

The present thesis is devoted to investigate the solid-state reaction in the
nanoscrystalline Ag/Sn thin film system at room temperature (at about
298K). The investigation includes:

1.

The different individual film thicknesses of Ag/Sn system were
prepared by Direct Current (DC) magnetron sputtering
instrument.

The sputtering rates were calculated from the layer thickness
measured by profilometer technique.

The structure identification of the samples was investigated by
X-ray diffraction (XRD) patterns.

The elemental composition of the studied samples was measured
by Secondary Neutral Mass Spectrometry (SNMS).

The Analysis of the SNMS profiles including:

e Studying the kinetics of the mechanisms based on the
grain boundary diffusion process.

e The velocity of the interface by Diffusion-induced grain
boundary motion (DIGM) mechanism was calculated.

e The growth rate of the AgsSn intermetallic phase by
Diffusion-induced recrystallization (DIR) mechanism
was estimated.

Keyv_vords: GB diffusion; Thin film reactions; Nanostructure.

\
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CHAPTER 1
THEORETICAL BACKGROUND and
LITERATURE RECIEW

A. THEORETICAL BACKGROUND

Solid-state reactions in nanostructured thin film systems are
interesting not only for technological applications, but are important of
pure fundamental research [9]. One of the effective bonding techniques
is diffusion soldering based on the interdiffusion process in thin films
bilayer and multilayer systems of high-melting and low-melting
materials [8]. Transport of material by migration of atoms or molecular
entities between two layers, i.e. diffusion (Fig. (1.1a)), is one of the
most fundamental, elementary processes in materials and, thus, of great
importance to the materials scientist and engineer [32]. Diffusion of

atoms in solids can be described by Fick's equations.

1.1. Fick's Equations

The first equation relates the flux (j : number of atoms crossing a
unit area per unit time) to the gradient of concentration (p: number of

atoms per unit volume) via the diffusion coefficient tensor D:
T = —Dgrad p (1.1)

In general, the diffusion flux and concentration are function of
time and position. In order to be able to determine the diffusion
coefficient, it is necessary to take into account the conservation of

matter. For not interacting particles, this is the continuity equation:
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dp ..
E-I_ divi=0 (1.2)

Combining equations (1.1) and (1.2), one obtains the second Fick's

law (or the diffusion equation):

d ~
a—i = div(D grad p) (1.3)

For cubic crystals and isotropic media, the diffusion coefficient
tensor reduces to scalar D and if the concentration varies only in the x-
direction thus, the first Fick's law is:

dp

Jx = =D (1.4)

and second Fick's law reduces to:

dp 0 ap
5=5x(0 5 (1.5)

If, additionally, the diffusion coefficient is independent of the

concentration, Eg. (1.5) can be written in the following form:

% _ 0%

Fri Dﬁ (1.6)

From mathematical point of view, Eqg. (1.6) is a second order,
linear partial differential equation. Initial and boundary conditions are
necessary to solve it [33]. Fig. (1.1b) depicts the solution of Fick's

second law at different times.
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(a) (b)

Fig. (1.1): () The migration of atoms or molecules, (b) Illustration of
the solutions of Fick's second law at different times.

Temperature has a profound influence on the coefficients and
diffusion rates. The temperature dependence of the diffusion

coefficients is:

D = Dgyexp (— %) (1.7)

where D, is a temperature-independent pre-exponential (m?/s), Qq is the
activation energy for diffusion (J/mol), R is the gas constant (8.31

J/mol.K), and T is the absolute temperature [34].

1.2. Expressions for atomic fluxes from first principles
and atomistic interpretation

1.2.1 Expression for Atomic Fluxes

According to the second law of thermodynamics, fluxes of
extensive quantities are proportional to the gradients of intensive
quantities, therefore Fick's first law in A/B binary alloys can be written
as: (if the gradients of other intensives than the chemical potential of A

atoms are zero)
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Ja=—LpVua (1.8)

where Lp is Onsager coefficient, ], is the atomic flux and p, is the

chemical potential which has a concentration dependence [35]:
ta(c) = yo + KTlnyc (1.9)

where p, is equilibrium chemical potential of A, k is Boltzmann
constant, T is the absolute temperature, y is the chemical activity
coefficient and c is the atomic fraction (c = N,/N), N, is number of A
atoms and N is the total number of atoms. Considering diffusion only

along x direction, derivative of p, can be expressed as:

oy KTO ol
Ha _ ——C(1 ny) (1.10)

9x ¢ ox dlnc

The (1.10) equation — using also Eg. (1.8) and Eq. (1.9) can be
divided into two parts. The first, conductive term describes the mixing
without external driving force, while the second one corresponds to the
driving force comprising from chemical interactions (y is unity for ideal
systems):

Dgdc Dgdlnydc

JA= =03 "0 dncax (1.11)

where Dg=Lp KT / c is the Brownian random walk diffusion coefficient,

dlny.

Di == DB (1 + Flnc

) the intrinsic diffusion coefficient and € is the

atomic volume. The convective term corresponds to a drift velocity vq4

and thus:



