

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

BEARd

MENOUFIA UNIVERSITY Faculty of Electronic Engineering, Menouf Department of Electrical Communications Engineering

Digital Processing of Speech Signals

By

Samir Abd El-ghaffar Abd El-Daim

A Thesis Submitted to The
Faculty of Electronic Engineering, Menoufia University
In Partial Fulfillment of the Requirements for the Degree of
Master of Science

In Electrical Communication

Prof. Khamis El-Shenawy

Dept. of Communications
Arab Academy for Science
& Technology and Maritime
Transport

Examiners

Prof. Moawad Ibrahim Dessouky Moawad I. Dessouky

Dept.of Electrical of Communications Engineering, Faculty of Electronic Engineering, Menoufia University

Asso.Prof. Mohammed Fahim El-Kordy

L. Elhordy

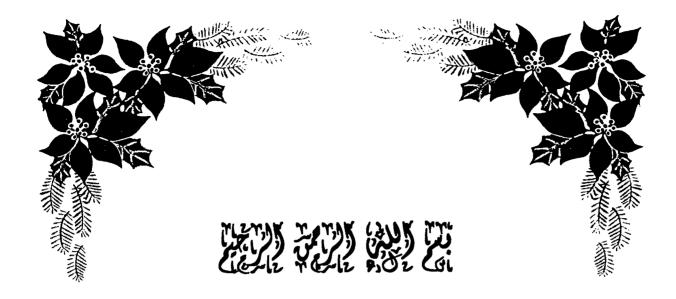
Dept. of Electrical Communications Engineering Faculty of Electronic Engineering, Menoufia University

S. E V-

To

My Parents

To

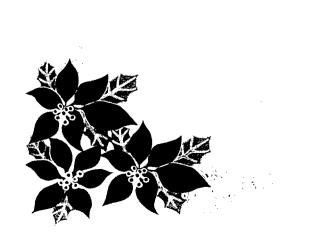

My Wife

To

My Lovely Children

وتل رب زونی علما

صدق الله العظيم


Acknowledgement

Dessouky, who gives me the first material to start the restoration process. Due to his professional and comprehensive guidance. Also, thanks to **Dr.** Moawad, for his support and encouragement. I would like to say thanks to **Asso.** Prof. Salah Mahmoud Diab, who aided and abetted my endeavors and immeasurable support. Thanks to **Dr.** Mohammed A. Zin El-Deen, for his valuable advice, and useful discussions. I also thank with pleasure Prof. M.E.M. Nasr, for suggesting the problem and providing invaluable guidance at various stages of this work.

Abstract

Abstract

This thesis represents an efficient method for reducing the quantization noise for coding speech signals at low bit rates. This method has gained interest due to its ease of implementation and channel-noise robustness compared to other digital Coders. Adaptive Differential Pulse Code Modulation (ADPCM) is one of the most efficient schemes for digital encoding of speech. Different algorithms have been proposed for increasing the dynamic range for a given value of Signal-to-quantization Noise Ratio (SNR). The predictor is a vital part of the overall system. This thesis also investigates the use of secondorder prediction to increase the SNR for several ADPCM systems at low bit rates spechialy Jayant Adaptive Quantizer (JAQ) and Icremental Adaptive Quantizer (IAQ). Inaddition a study and comparsion has been done between the different adaptation systems. Moreover computer simulations have been performed using three different types of input signals, sinusoidal signal, random signal and real speech signal. Inaddition, a unit step function is used to show that the IAQ is the more suitable to follow the variation for speech signal. It concludes that the second order prediction gives better performance than the first order predication. Four decibels improvement in SNR has been achieved in the case of real speech signal and consequently the reduction bit rate has been obtained. Furthermore the hardware implementation of this system is constructed to realize the predictive coding with good digital accuracy which reduced word size.

List of Publications

A paper extracted from the research work of the MSc thesis:

M.E.M. Nasr, S.E. Diab, M.A. Zin El-Deen and S. Abd El-Daim. "Digital processing of speech using ADPCM with 2nd order predictor" Faculty of Electronic Engineering. Bulletin No. 22, July 2001, P.P. 61-66.

Contents

Subject	Page
Acknowledgment	i
Abstract	ii
List of Publications	iii
Contents	iv
List of abbreviations	vii
List of symbols	viii
List of Figures	ix
List of Tables	Xv
Chapter (1): Introduction	1
Chapter (2): Fundamental of Speech Signal Processing	7
2.1 Digital Speech Processing	8
2.1.1 Digital Transmission and Storage of Speech	11
2.1.2 Speech Synthesis Systems	12
2.1.3 Speaker Verification and Identification Systems	12
2.1.4 Speech Recognition Systems	13
2.1.5 Aids-to-the-Handicapped	13
2.1.6 Enhancement of Signal Quality	13
Chapter (3): Coding Techniques of ADPCM	14
3.1 Pulse Code Modulation (PCM)	15

Subject	Page
3.2 Quantization	16
3.2.1 The Uniform Quantizer	16
3.2.2 Granular Noise and Overload Distortion	22
3.2.3 Adaptive Quantization	23
3.2.4 Instantaneous Adaptation	25
Chapter (4): Encoding Scheme ADPCM Using Higher Order	
Predictor	29
4.1 First-Order Prediction	32
4.2 Second-Order Prediction	34
4.2.1 Adaptive DPCM	35
4.2.2 Optimization of the Second-Order Predictor	36
4.2.3 Stability Condition for the Second-Order Predictor	38
Chapter (5): Performance Evaluation of ADPCM	39
5.1 Optimization of System Parameters	39
5.2 ADPCM Tests	41
5.2.1 System Step Response	42
5.2.2 Objective tests	53
5.2.2.1 System performance study using sinusoidal	
input signal	53
5.2.2.2 System performance study using random signal	
input	57

Subject	Page
5.2.2.3 System performance study using Real speech	
signal input	63
5.2.2.4 Comparsion between different predictors using	
real speech signals	69
5.3 Subjective Test	81
5.4 Impact of channel errors	83
5.4.1 Performance of ADPCM under noise channel	83
Chapter (6): Implementation of ADPCM	87
6.1 System Implementation	88
Chapter (7): Conclusion and Future Work	99
Appendeix	101
References	108