PHYTOREMEDIATION OF SOME HEAVY METALS POLLUTED SOIL USING SOME ORNAMENTAL PLANTS

by

EMAN MAHMOUD AHMED

B. Sc. Agric. (Horticulture), 2000

Cairo University

A Thesis Submitted in Partial Fulfillment of
The Requirement for the Master Degree in
Environmental Science
Department of Agricultural Science
Institute of Environmental Studies & Research
Ain Shams University

APPROVAL SHEET

PHYTOREMEDIATION OF SOME HEAVY METALS POLLUTED SOIL USING SOME ORNAMENTAL PLANTS

by

EMAN MAHMOUD AHMED

B.Sc. Agric. (Horticulture), Cairo University, 2000

This Thesis for Master Degree in Environmental

Science and has been approved by:

	Names	Signature
1-	Prof. Dr. Mohamed El-Said El-Nennah	•••••
	Prof. of Soils, Fac. Agric. Ain Shams University	
2-	Prof. Dr. Faislal M. A. A. Saadawy	
	Prof. Emeritus Dept. of Ornamental Plant Research	nes
	Horticulture Research Institute	
3-	Prof. Dr. Hesham I. El-Kassas	
	Prof. of Soil and Water Environment	
	Vice Dean Postgraduate Studies and Research	
4-	Prof. Dr. Gamal A. K. Saber	
	Deputy Director	
	Drainage Research Institute, National Water Resea	rch Center

PHYTOREMEDIATION OF SOME HEAVY METALS POLLUTED SOIL USING SOME ORNAMENTAL PLANTS

by

EMAN MAHMOUD AHMED

B.Sc. Agric. (Horticulture), Cairo University, 2000

A Thesis Submitted in Partial Fulfillment of The Requirement for the Master Degree in Environmental Science

Under The Supervision of:

Name	Signature
1- Prof. Dr. Hesham I. El-Kassas	•••••
Prof. of Soil and Water Environment	
Vice Dean Postgraduate Studies and Research	
2- Prof. Dr. Naglaa Said Abu Taleb	••••
Prof. of Horticulture	
Fac. Agric. Ain Shams University	
3- Prof. Dr. Gamal A. K. Saber	••••
Deputy Director	
Drainage Research Institute, National Water Research	arch Center

ACKNOWLEDGMENT

First I would like to thank my god for helping me to carry out this work.

I would like to present my full thanks and gratitude to *Prof. Dr. Hesham I. El-Kassas* Professor, of Studies and Research, Institute of Environmental Ain Shams University for his supervision, valuable guidance, kindness and continuous support.

I am grateful to *Prof. Dr. Gamal Abd El-Naser* Deputy Director of Drainage Research Institute (DRI) for his true effort through the experimental work.

Thanks are due to *Prof. Dr. Naglaa Said Abu Taleb* for her advises and encouragement and help in writting.

I am deeply thankful for *Dr. Mohamed Shaban Mohamed Abu-Salama* (DRI) for his valuable remarks and support in the statistical analysis.

I am fully of <u>prettied</u> to my father for helping, supporting and encouraging me, also my husband.

Finally I will present this master for my mother, my father and my son *Hamzah*.

PHYTOREMEDIATION OF SOME HEAVY METALS POLLUTED SOIL USING SOME ORNAMENTAL PLANTS

ABSTRACT

Phytoremediation is a promising technique that employs different types of plants to remove, degrade or immobilize pollutants from soil and water.

In this research, three ornamental plants **Geranium** (*Pelargonium zonal* var. Chalumin), Bermuda Grass (Cynodon dactylon) and the Baby Sun Rose (Aptenia cordifolia) were employed to test their potential in the removal of some heavy metals from polluted soils under the Egyptian conditions. The selection of the plant species was based on four main criteria; growth rate, retention period, root depth and cost required. A fixed experiment was carried out at "Bortos Village" during the successive seasons of 2004 and 2005. Three plots were excavated at 4.0 m length x 1.5 m width \times 50 cm depth. Then, they were isolated with perforated plastic sheets in order to ensure the natural drainage for the irrigation water. The plots were then filled with soils imported (directly after the regular drain rehabilitation) from the bottom soil of Al-Lebiny drain. Every two months, three soil samples were collected from each plot and mixed together to obtain one sample that may represent the whole plot. The same procedure was also practiced with plant samples. Series of statistical tests were carried out including checking the normality status, the homogeneity of variances, analysis of variances and multiple comparisons (least significant differences). The results showed that there are gradual decreases for the

average metal concentrations measured in the soil samples. The overall decrease (after 19 months) varied from 61.3% to 99% with an average around 93.6% for the samples collected from soils that were cultivated with Bermuda grass, Geranium and the Baby Sun Rose (*Aptenia cordifolia*).

In the meantime, there is gradual increase recorded for the metals concentrations measured in the plant samples cultivated in the polluted soils. The statistical evaluation proved that no differences were found between metal concentrations that were extracted by the Bermuda Grass plant. In the meantime, Geranium has a special behavior with some metals compared to the others.

At the same time, there is insignificant difference between the plants uptake of the Nickel (Ni), Iron (Fe), Copper (Cu), Manganese (Mn), Chromium (Cr), Cobalt (Co), Barium (Ba), Aluminum (Al), Zinc (Zn) and Lead (Pb).

Only, Geranium has higher ability to uptake the Cadmium (Cd) compared to the Baby Sun Rose (*Aptenia cordifolia*).

TABLE OF CONTENT

1. INTRODUCTION	
2. REVIEW OF LITERATURE	4
2.1 Heavy Metals	4
2.2 Sources of Pollution by Heavy Metals	4
2.2.1 Pollution by Heavy Metals in Air	5
2.2.2 Pollution by Heavy Metals in Water	5
2.2.3 Pollution by Heavy Metals in Soil	6
2.3 Impact of Heavy Metals on Human Health	7
2.4 Heavy Metals and Hyper-accumulator Plants	9
2.5 Remediation of Heavy Metals by Phytoremediation	16
2.6 Ornamental Plants as Hyper- accumulators	
2.6.1 Geranium (<i>Pelargonium Zonale var. Chalumin</i>).	20
2.6.2. Bermuda Grass (Cynodon dactylon)	21
2.6.3 Baby Sun Rose (Aptenia cordifolia).	22
3. MATERIALS AND METHODS	24
3.1 Collection of Samples	24
3.2 Site Preparation	25
3.3 Soil and Plant Analyses	26
3.3.1 Digestion Method	28
3.4 Statistical Analyses and the Bio-Concentration Factor	29

4. RESULTS AND DISCUSSION	30
4.1 Heavy Metals Concentration in Soil before Planting	
4.2 Heavy Metals Concentration in Soil and the Reduction Percentage	
after Planting	
4.2.1 Aluminum (Al)	32
4.2.2 Barium (Ba)	34
4.2.3 Cadmium (Cd)	36
4.2.4 Cobalt (Co)	38
4.2.5 Chromium (Cr)	40
4.2.6 Copper (Cu)	42
4.2.7 Iron (Fe)	44
4.2.8 Manganese (Mn)	46
4.2.9 Nickel (Ni)	48
4.2.10 Lead (Pb)	50
4.2.11 Zink (Zn)	52 57
4.3 Heavy Metals Concentration in Plant and the Rate of Elements	
Increase in the three Examined Plants (%)	
4.3.1 Aluminum (Al)	59
4.3.2 Barium (Ba)	62
4.3.3 Cadmium (Cd)	65
4.3.4 Cobalt (Co)	67
4.3.5 Chromium (Cr)	70
4.3.6 Copper (Cu)	72
4.3.7 Iron (Fe)	75 70
4.3.8 Manganese (Mn)	73

4.3.9 Nickel (Ni)	77
4.3.10 Lead (Pb)	79
4.3.11 Zink (Zn)	82
4.4 Bio Concentration Factor (BCF)	85
4.4.1 Bio Concentration Factor (BCF) For Each Examined	l Plant 85
4.5 Statistical Evaluation	90
4.5.1 Normality Status	90
4.5.2 Test of Homogeneity of Variances	91
4.5.3 Analysis of Variances (ANOVA)	91
5. CONCLUSIONS AND RECOMMENDATIONS	93
5.1 Summary and Conclusions	93
5.2 Recommendations	95

LIST OF TABLES

Table 1	Agriculture source of trace element contamination in soils (ppm/dw)	7
Table 2	Estimates of phytoremediation costs versus costs of established technologies	18
Table 3	Advantages and disadvantages of phytoremediation	19
Table 4	Physical and chemical properties of the used soil	26
Table 5	Chemical analysis of irrigation water	28
Table 6	Heavy metals concentration in Soil before planting (mg. Kg ⁻¹)	30
Table 7	Al concentration in soil (mg. Kg ⁻¹) and reductions (%)	33
Table 8	Ba concentration in soil (mg. Kg ⁻¹) and reductions (%)	35
Table 9	Cd concentration in soil (mg. Kg ⁻¹) and reductions (%)	37
Table 10	Co concentration in soil (mg. Kg ⁻¹) and reductions (%)	39
Table 11	Cr concentration in soil (mg. Kg ⁻¹) and reductions (%)	41
Table 12	Cu concentration in soil (mg. Kg ⁻¹) and reductions (%)	43
Table 13	Fe concentration in soil (mg. Kg ⁻¹) and reductions (%)	45
Table 14	Mn concentration in soil (mg. Kg ⁻¹) and reductions (%)	47
Table 15	Ni concentration in soil (mg. Kg ⁻¹) and reductions (%)	49
Table 16	Pb concentration in soil (mg. Kg ⁻¹) and reductions (%)	51
Table 17	Zn concentration in soil (mg. Kg ⁻¹) and reductions (%)	53
Table 18	Heavy metals concentration and rate of increase of Al in the three examined plants (%)	58
Table 19	Heavy metals concentration and rate of increase of Ba in three examined plants (%)	61
Table 20	Heavy metals concentration and rate of increase of Cd in the three examined plants (%)	63

Table 21	Heavy metals concentration and rate of increase of Co in three examined plants (%)		66
Table 22	Heavy metals concentration and rate of increase of Cr in three examined plants (%)		68
Table 23	Heavy metals concentration and rate of increase of Cu in examined plants (%)	three	71
Table 24	Heavy metals concentration and rate of increase of Fe in examined plants (%)	three	73
Table 25	Heavy metals concentration and rate of increase of Mn in examined plants (%)	three	76
Table 26	Heavy metals concentration and rate of increase of Ni in examined plants (%)	three	78
Table 27	Heavy metals concentration and rate of increase of Pb in examined plants (%)	three	81
Table 28	Heavy metals concentration and rate of increase of Zn in three examined plants (%)		83
Table 29	Bio concentration Factor (BCF) for the examined plant Bermuda grass		86
Table 30	Bio concentration Factor (BCF) for the examined plant Gera	nium	87
Table 31	Bio concentration Factor (BCF) for the examined plant Baby Rose (Aptenia cordifolia)	Sun	89

LIST OF FIGUREES

Conceptual response strategies of metal concentration in plant tops in relation to increasing total metal concentration in the soil	13
Al-Lebiny drain before rehabilitation	24
Experimental plots	26
Al concentration in soil (mg. Kg ⁻¹)	33
Al reductions (%) in soil	34
Ba concentration in soil (mg. Kg ⁻¹)	35
Ba reductions (%) in soil	36
Cd concentration in soil (mg. Kg ⁻¹)	37
Cd reductions (%) in soil	38
Co concentration in soil (mg. Kg ⁻¹)	39
Co reductions (%) in soil	40
Cr concentration in soil (mg. Kg ⁻¹)	41
Cr reductions (%) in soil	42
Cu concentration in soil (mg. Kg ⁻¹)	43
Cu reductions (%) in soil	44
Fe concentration in soil (mg. Kg ⁻¹)	45
Fe reductions (%) in soil	46
Mn concentration in soil (mg. Kg ⁻¹)	47
Mn reductions (%) in soil	48
Ni concentration in soil (mg. Kg ⁻¹)	49
Ni reductions (%) in soil	50
Pb concentration in soil (mg. Kg ⁻¹)	51
	tops in relation to increasing total metal concentration in the soil Al-Lebiny drain before rehabilitation Experimental plots Al concentration in soil (mg. Kg ⁻¹) Al reductions (%) in soil Ba concentration in soil (mg. Kg ⁻¹) Ba reductions (%) in soil Cd concentration in soil (mg. Kg ⁻¹) Cd reductions (%) in soil Co concentration in soil (mg. Kg ⁻¹) Co reductions (%) in soil Cr concentration in soil (mg. Kg ⁻¹) Cr reductions (%) in soil Cu concentration in soil (mg. Kg ⁻¹) Cu reductions (%) in soil Fe concentration in soil (mg. Kg ⁻¹) Fe reductions (%) in soil Mn concentration in soil (mg. Kg ⁻¹) Mn reductions (%) in soil Ni concentration in soil (mg. Kg ⁻¹) Ni reductions (%) in soil

Figure 23	Pb reductions (%) in soil	52
Figure 24	Zn concentration in soil (mg. Kg ⁻¹)	53
Figure 25	Zn reductions (%) in soil	54
Figure 26	Al concentration in the three examined plants (mg. Kg ⁻¹)	59
Figure 27	Rate of Increase of AI in the three examined plants (%)	59
Figure 28	Ba concentration in the three examined plants (mg. Kg ⁻¹)	61
Figure 29	Rate of Increase of Ba in the three examined plants (%)	62
Figure 30	Cd concentration in the three examined plants (mg. Kg ⁻¹)	64
Figure 31	Rate of Increase of Cd in the three examined plants (%)	64
Figure 32	Co concentration in the three examined plants (mg. Kg ⁻¹)	66
Figure 33	Rate of Increase of Co in the three examined plants (%)	67
Figure 34	Cr concentration in the three examined plants (mg. Kg ⁻¹)	69
Figure 35	Rate of Increase of Cr in the three Examined plants (%)	69
Figure 36	Cu concentration in the three examined plants (mg. Kg ⁻¹)	71
Figure 37	Rate of Increase of Cu in the three examined plants (%)	72
Figure 38	Fe concentration in the three examined plants (mg. Kg ⁻¹)	74
Figure 39	Rate of Increase of Fe in the three examined plants (%)	74
Figure 40	Mn concentration in the three examined plants (mg. Kg ⁻¹)	76
Figure 41	Rate of Increase of Mn in the three examined plants (%)	77
Figure 42	Ni concentration in the three examined plants (mg. Kg ⁻¹)	79
Figure 43	Rate of Increase of Ni in the three examined plants (%)	79
Figure 44	Pb concentration in the three examined plants (mg. Kg ⁻¹)	81
Figure 45	Rate of Increase of Pb in the three examined plants (%)	82
Figure 46	Zn concentration in the three examined plants (mg. Kg ⁻¹)	84
Figure 47	Rate of Increase of Zn in the three examined plants (%)	84

Figure 48	Bio concentration factor (BCF) for the examined plant	87
	Bermuda Grass	
Figure 49	Bio concentration factor (BCF) for the examined plant Geranium	88
Figure 50	Bio concentration factor (BCF) for the examined plant Baby Sun Rose (Aptenia cordifolia)	89

LIST OF ANNEXES

Annex 4-1	The detailed output of the statistical evaluation	96
	using SPSS Software	
Annex 4-1A1	Test of Normality	97
Annex 4-1A2	Test of Homogeneity of Variances	98
Annex 4-1A3	ANOVA Table	99
Annex 4-1A4	LSD Multiple Comparisons Bermuda Grass	100
Annex 4-1A5	LSD Multiple Comparisons Geranium	104
Annex 4-1A6	LSD Multiple Comparisons Baby Sun Rose	108
	(Aptenia cordifolia)	
Annex 4-1B1	Test of Normality	112
Annex 4-1B2	Test of Homogeneity of Variance	113
Annex 4-1B3	ANOVA Table	113
Annex 4-1B4	LSD Multiple Comparisons For Elements	115