Assessment of Correlation between Angiopoietin-Like Protein II (ANGPTL-2) and Insulin Resistance in Type 2 DM Cases and Obese Persons

Thesis

Submitted for Partial Fulfillment of MD Degree in Internal Medicine

By Salah Hussein Elhalawany M.B.B.Ch. M. Sc, Ain Shams University

Under Supervision of **Prof. Dr. Nihad Shokry Shoeib**

Professor of internal Medicine- Diabetes and Endocrinology Faculty of Medicine- Ain Shams University

Prof. Dr. Khaled Mahmoud Makboul

Professor of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Yara Mohammed Eid

Assistant Professor of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Maram Mohammed Maher Mahdy

Assistant Professor of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Merhan Samy Nasr

Assistant Professor of Internal Medicine, Diabetes and Endocrinology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

No words can express my deepest appreciation and profound respect to **Prof. Dr. Nihad Shukry Shoeib,** Professor of Internal Medicine and Endocrinology, Ain Shams University, for her continuous guidance and support. She has generously devoted much of her time and her effort for planning and supervision of this study.

Also, my profound gratitude to **Prof. Dr. Khaled Mahmoud Makboul,** Professor of Internal Medicine and
Endocrinology, Ain Shams University, for his kind
supervision and support. It was great honor to work under
his supervision.

I would like also to thank **Dr. Yara Mohammed Eid,** Assistant Professor of Internal Medicine and Endocrinology, Ain Shams University Hospitals, for her support, help and constructive criticism during this work.

I would like also to thank **Dr. Maram Mohammed Maher Mahdy,** Assistant Professor of Internal Medicine
and Endocrinology Ain Shams University Hospitals, for
her support and help during this work.

Also, my profound gratitude to **Dr. Merhan Samy Nasr,** Assistant Professor of Internal Medicine and Endocrinology, Ain Shams University, for her great care and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Salah Hussein Elhalawany

Tist of Contents

Subject	Page No.
List of Abbreviations	I
List of Tables	V
List of Figures	VII
Introduction	1
Aim of the Work	4
Review of Literature	
Chapter (1): Diabetes Mellitus	5
Chapter (2): Insulin Resistance	40
Chapter (3): Obesity	60
Chapter (4): Angiopoietin-Like Protein	97
Patients and Methods	123
Results	141
Discussion	179
Summary	190
Conclusion	195
Recommendations	196
References	197
Arabic Summary	

List of Abbreviations

Abb.	Full term		
2hpp	2 hours post prandial		
ACE	Angiotensin- converting enzyme.		
ADA	American diabetes association		
AGE	Advanced glycation end products		
ANGPTL-2	Angiopoietin-like protein II level		
аро В	Apolipoprotein B		
ARB	Angiotensin recptor blocker		
ATP	Adenosine triphosphate		
ATP III	Adult Treatment Pannel III		
BMAL1	Brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1		
BMI	Body mass index		
CAD	Coronary artery disease		
C-AMP	Cyclic adenosine monophosphate		
CHD	Coronary heart disease		
CKD	Chronic kidney disease		
CLOCK	Circadian locomotor output kaput		
CVD	Cardiovascular disease.		
CYP	Cytochrome p		
DAN	Diabetic autonomic neuropathy		
DBP	Diastolic blood pressure		
DCCT	Diabetes Control and Complications Trial		
DDP-4	Dipeptidyl peptidase -4		
DM	Diabetes mellitus		
DR	Diabetic retinopathy		
DSPN	Distal symmetrical sensorimotor polyneuropathy		

Abb.	Full term			
ELISA	Enzyme linked immunosorbant assay.			
eNOS	Endothelial enzyme nitric oxide synthase			
ER	Rough endoplasmic reticulum			
FFA	Free fatty acid			
FPG	Fasting plama glucose.			
GLUT 4	Glucose transporter 4			
GTP	Guanosine tri- phosphate			
GWAS	Genome wide association study			
HDL-c	High density lipoprotein cholesterol			
HOMA-IR	Homeostasis model assessment for insulin resistance			
HRP	Horseradish Peroxidase			
Hs-CRP	High sensitive C reactive protein			
ICAM-1	Intracellular adhesion molecule-1			
IDDM	Insulin dependent Diabetes mellitus.			
IDF	International Diabetes Federation			
IFN	Interferon			
IGF-1	Insulin-like growth factor I			
IGF-II	Insulin-like growth factor II			
IGT	Impaired glucose tolerance			
IGTT	Insulin glucose tolerance test			
ІКК-Еβ	Inhibitor of Kappa beta kinase			
IL-6	Interlukein-6			
IR	Insulin resistance			
IRS-1, 2	Insulin receptor substrate1,2			
LDL-c	Low-density lipoprotein cholesterol.			
LILRB2	Leukocyte immunoglobulin-like receptor subfamily B member 2 i			
m RNA	Messenger Ribonucleic acid			

Abb.	Full term				
MAbs	Monoclonal antibodies				
MAPK	Mitogen activated protein kinase				
MCP-1	Monocytes chemo-attractant protein-1				
MODY 1	Maturity onset diabetes of the young 1				
NADPH	Nicotinamide adenine dinucleotide phosphate				
NCEP	National Cholesterol Education Program				
NF-kB	Nuclear factor-kappaB				
NGSP	National Glycohemoglobin Standardization Program				
NHANES	National Health and Nutrition Examination Survey				
NO	Nitric oxide				
OD	Optical density				
OGTT	Oral glucose tolerance test				
OSA	Obstructive sleep apnea				
PAD	Peripheral arterial disease				
PAI-1	Plasminogen activator inhibitor-1				
PCOS	Polycystic ovary syndrome				
PDGF	Platelet drived growth factor				
РІЗ-К	Phosphatidylinositol 3-kinase				
PIP-3K	Phosphatidylinositol triphosphate Kinase				
PPAR	Peroxisome proliferator activated receptors				
RAAS	Renin Angiotesinogen-Aldosteron system				
Roc-Curve	Receiver operating characteristics curve analysis.				
SBP	Systolic blood pressure				
T2DM	Type 2 Diabetes mellitus.				
TG	Triglycerides				

Abb.	Full term			
TGF	Transforming growth factor.			
TGF-B	Transforming growth factor B			
TH0	T-helper 1			
Th1	T-helper 1			
TIA	Transient ischemic attacks			
TLR	Toll-like receptors			
TMB	Tetramethylbenzydine			
TNF-α	Tumor necrosis factor alpha			
TZD	Thiazolidinedione			
UKPDS	United Kingdom Prospective Diabetes Study			
USA	United States of America.			
VEGF	Vascular endothelial growth factor			
VLDL	Very low density lipoprotein			
WHR	Waist hip ratio			

List of Tables

Table	Title				
	Table of Review and Subject and Methods				
1	Diagnostic criteria for DM	9			
2	Diagnostic criteria for prediabetes	11			
3	Stages of diabetic nephropathy	30			
4	Management of CKD in diabetes	30			
5	Criteria for diagnosis of metabolic syndrome	59			
6	Classification of obesity in adults	63			
	Table of Results				
7	Comparison between the four studied	156			
,	groups regarding different parameters				
	Comparison between the four studied				
8	groups regarding gender, smoking history 1				
	and fundus examination				
9	Comparison between the four studied	158			
	groups as regard ANGPTL-2				
10	Comparison between the four studied	160			
	groups as regards carotid hs-CRP				
11	Comparison between the studied groups as	161			
	regards HOMA-IR				
12	Comparison between obese and non obese	162			
	subjects as regards serum ANGPTL-2:	102			
13	Comparison between diabetic and non-	163			
13	diabetic subjects as regards serum ANGPTL-2	103			

Table	Title	Page		
14	Mean ANGPTL-2 level in diabetic patients with and without Diabetic retinopathy			
15	Patients with IR in each group	165		
16	Comparison between subjects with and without insulin resistance among the 4 studied groups: numerical variables	165		
17	Comparison between subjects with and without insulin resistance regarding ANGPTL-2	166		
18	ROC curve analysis for the diagnostic value of ANGPTL-2 in discrimination between subjects with or without insulin resistance	167		
19	Multivariable binary logistic regression analysis for the relation between ANGPTL-2 and insulin resistance as adjusted for obesity and T2DM	168		
20	Multivariable binary logistic regression analysis for the relation between ANGPTL-2 and T2DM as adjusted for insulin resistance and obesity	168		
21	Multivariable binary logistic regression analysis for the relation between ANGPTL-2 and obesity as adjusted for insulin resistance and T2DM	169		
22	Correlation between ANGPTL-2 and other numerical variables in all the 4 studied groups	169		

List of Figures

Figure	Title				
1	Mechanisms by which hyperglycemia	19			
	induced diabetic vascular complications				
2	Schematic presentation of insulin signalling	45			
	pathways	13			
3	The main molecular mechanisms involved in				
	the development of insulin resistance	51			
	associated with obesity				
4	Classification of fat and distribution of white				
	adipose tissue (WAT) and brown adipose	66			
	tissue (BAT)				
5	White adipose tissue is a highly active organ				
	secreting various peptides implicated in	66			
	inflammatory and metabolic processes				
6	Anatomical localization of the main	68			
	abdominal adipose tissue depots	00			
7	Excess energy intake enhances adipose				
	tissue inflammation and contributes to the	74			
	development of metabolic syndrome				
8	Adipocyte-macrophage interaction leading	79			
	to dysfunction				
9	Schematic protein structure of an ANGPTL	98			
10	The role of ANGPTL-2 in physiological and				
	pathological adipose tissue remodeling	104			

Figure	Title	Page		
11	A proposed model of adipocyte-derived ANGPTL2 contribution to inflammation, insulin resistance, and vascular dysfunctions	110		
12	Comparison between the four studied groups regarding ANGPTL-2	159		
13	Comparison between the four studied groups regarding hs-CRP	160		
14	Comparison between the four studied groups regarding HOMA-IR	161		
15	Comparison between obese and non obese subjects as regards serum ANGPTL-2			
16	Comparison between diabetic and non- diabetic subjects as regards serum ANGPTL-2	163		
17	Mean ANGPTL-2 level in patients with Diabetic retinopathy	164		
18	Comparison between Subjects with and without insulin resistance regarding ANGPTL-2	166		
19	ROC curve for discrimination between subjects with or without insulin resistance using serum ANGPTL-2	167		
20	Scatter plot showing the correlation between ANGPTL-2 and age	170		

Figure	Title	Page			
21	Scatter plot showing the correlation	170			
	between ANGPTL-2 and BMI				
22	Scatter plot showing the correlation				
	between ANGPTL-2 and waist circumference	171			
23	Scatter plot showing the correlation	4.71			
	between ANGPTL-2 and systolic BP	171			
24	Scatter plot showing the correlation	172			
	between ANGPTL-2 and diastolic BP	172			
25	Scatter plot showing the correlation	172			
	between ANGPTL-2 and FBS	1/2			
26	Scatter plot showing the correlation				
	between ANGPTL-2 and fasting serum	172			
	insulin				
27	Scatter plot showing the correlation	172			
	between ANGPTL-2 and HbA1c	1/2			
28	Scatter plot showing the correlation	470			
	between ANGLP2 and HOMA-IR	173			
29	Scatter plot showing the correlation	1=0			
	between ANGPTL-2 and the duration of DM	173			
30	Scatter plot showing the correlation				
	between ANGPTL-2 and protein/creatinine	175			
	ratio				
31	Scatter plot showing the correlation				
	between ANGLP2 and total cholesterol	175			

Figure			Title			Page
32	Scatter	plot	showing	the	correlation	176
	between	ANGP'	TL-2 and T	AG		176
33	Scatter	plot	showing	the	correlation	176
	between	ANGP'	TL-2 and LI	OL-C		176
34	Scatter	plot	showing	the	correlation	177
	between ANGPTL-2 and HDL-c					1//
35	Scatter	plot	showing	the	correlation	177
	between ANGPTL-2 and hs-CRP					1//
36	Scatter	plot	showing	the	correlation	178
	between ANGPTL-2 and HbA1c					1/8

Assessment of Correlation between Angiopoietin-Like Protein II (ANGPTL-2) and Insulin Resistance in Type 2 DM Cases and Obese Persons

Abstract

Introduction: ANGPTL-2 is primarily secreted by adipose tissue. Increased circulating ANGPTL2 levels are closely related to adiposity, inflammation and systemic insulin resistance. is to assess the correlation between angiopoietin-like protein II (ANGPTL-2) and insulin resistance in type 2 DM cases and obese persons.

Materials and methods: a total 80 subjects were included in the study their mean age was 51±6 years old, and they were divided into four groups. Group (I) Included 20 obese type 2 diabetic patients, group (II) Included 20 obese non-diabetic patients, group (IV) Included 20 lean type 2 diabetic patients and group (IV) Included 20 lean non-diabetic subjects as control. All subjects in this study were subjected to full medical history taking, thorough physical examination, fundus examination, abdominal ultrasound, FPG, HbA1c, lipid profile, ALT, AST, Creatinine, BUN, HCV antibody, HBs Ag, Urinary protein creatinine ratio, HOMA IR, Serum ANGPTL-2 and hs-CRP.

Results: The present study showed that there was a high statistical significant difference between the studied groups (p-value<0.01), being the highest in group I (mean 12.6 \pm 4.1 ng/ml) followed by group III (9.5 \pm 3.8 ng/ml), group II (7.6 \pm 3.2 ng/ml) and group IV (5.6 \pm 1.8 ng/ml).

Moreover, Serum ANGPTL-2 level was significantly higher in type 2 diabetic patients with diabetic retinopathy. Multivariable binary logistic regression analysis in the current study demonstrated that ANGPTL-2 was found to be an independent predictor for insulin resistance and T2DM but not for obesity.

Conclusion: ANGPTL-2 can be used as an independent predictor for insulin resistance and T2DM.

Keywords: Angiopoietin-like protein II level, Fasting plama glucose, Type 2 Diabetes mellitus.