AIM SMAMS UNIVERSITY

Role of Diffusion Tensor MRI at 3T: in Differentiation Between Central Gland Prostatic Cancer and Benign Prostatic Hyperplasia

Essay

Submitted for partial fulfillment of Master Degree
In Radiodiagnosis

 ${m By}$ Ibrahim AbdulSalam Taher ${\it M.B.,\,B.Ch.}$

Under The Supervision Of

Dr.Marwa Ibrahim Fahmy

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University.

Dr. Hossam Moussa Sakr

Assistant professor of Radiodiagnosis Faculty of Medicine, Ain Shams University.

> Faculty of Medicine Ain Shams University 2015

Acknowledgment

First, thanks are all to ALLAH for blessing this work until it has reached its end.

My profound thanks and deep appreciation to

Prof. Dr. Marwa Ibrahim Fahmy, Professor

of Radiodiagnosis at Faculty of Medicine, Ain Shams
University for her great support and advice, her valuable
remarks that gave me the confidence and encouragement to
fulfill this work.

I am deeply grateful to **Dr. Hossam Moussa Sakr,**

Assistant professor of Radiodiagnosis at Faculty of Medicine, Ain Shams University for adding a lot to this work by his experience and for his keen supervision.

I am extremely sincere to my family who stood beside me, support me throughout this work.

Ibrahim AbdulSalam Taher

List of CONTENT

Contents	Page
List of Abbreviations	I
List of Figures	III
List of Tables	V
Introduction	VI
Aim of the work	IX
Chapter 1: Anatomy of the Prostate	1
Chapter 2: Pathology of Central Gland Prostate Cancer & Benign Prostatic Hyperplasia	16
Chapter 3: Physics and Technique of MRI & Diffusion Tensor Examination	37
Chapter 4: Manifestation of MRI & Diffusion Tensor MRI in Central Gland Prostatic Cancer & Benign Prostatic Hyperplasia	69
Summary and Conclusion	96
References	100
Arabic Summary	122

LIST OF ABBREVIATION

AAH	Atypical Adenomatous Hyperplasia
ADC	Apparent Diffusion Coefficient
ASSET	Array Spatial Sensitivity Encoding Technique
BPH	Benign Prostatic Hyperplasia
CG	Central Gland
CT	Computed Tomography
CZ	Central Zone
DRE	Digital Rectal Exam
DTI	Diffusion Tensor Imaging
DWI	Diffusion Weighted Imaging
ECE	Extra Capsular Extension
EPI	Echo-planar Imaging
ERC	Endo-Rectal Coil
FA	Fractional Anisotropy
FOV	Field of View
G	Gauss
GH	Glandular Hyperplasia
GS	Gleason Score
HIFU	High Intensity Focused Ultrasound
HPC1	Hereditary Prostate Cancer 1
KD	Kilo-Dalton
LN	Lymph Node
MR	Magnetic Resonance
MRI	Magnetic Resonance Imaging
MRS	MR Spectroscopy
PACS	Picture Archiving and Communication System

LIST OF ABBREVIATION

PCa	Prostate cancer
PCAP	Predisposing for Cancer of the Prostate
PCR	Polymerase Chain Reaction
PIN	Prostatic Intraepithelial Neoplasia
PSA	Prostate Specific Antigen
PSAD	Prostate Specific Antigen Density
PSAV	Prostate Specific Antigen Velocity
PZ	Peripheral Zone
RF	Radio-Frequency
ROI	Regions Of Interest
SE	Spin Echo
SH	Stromal Hyperplasia
SNR	Signal to Noise Ratio
SVI	Seminal Vesicle Invasion
T	Tesla
TE	Time Echo
TR	Time Repeated
TRUS	Trans-Rectal Ultra-Sonography
TSE	Turbo Spin Echo
TZ	Transitional Zone
US	Ultra-Sonography

LIST OF FIGUERS

Fig.No	Title	Page
1.1	Diagrammatic representation of the pelvic Anatomy	2
1.2	Diagram of lobar & zonal anatomy of the prostate	3
1.3	Diagram showing coronal & sagittal planes of different zones	7
1.4	Diagram showing the arterial Supply of the Prostate	9
1.5	Diagram showing the venous Drainage of the Prostate	10
1.6	Diagram showing distribution of nerve branches to the prostate	11
1.7	Normal prostate axial T2WI, DWI & ADC map	14
1.8	Normal prostate zonal anatomy axial T2WI	15
2.1	Histologic specimen. gross section of the prostate	18
2.2	Diagram showing the grading system of cancer prostate	27
2.3	Diagram illustrating the TNM staging of prostatic carcinoma	35
3.1	Diagram shows the diffusion-driven random trajectory	41
3.2	Application of diffusion-labelling gradients of equal strength	43
3.3	Diagram illustrating free & restricted diffusion of water	44
3.4	Diffusion of water molecules	45
3.5	Diagram represent of measuring water diffusion	47
3.6	Echo-planar imaging	49
3.7	Diagram illustrate how a DW sequence incorporates two symmetric motion-probing gradient pulses	50
3.8	Graph illustrates the logarithm of relative signal intensity	61

LIST OF FIGUERS

3.9	DWI of the prostate; with multiple b values	66
4.1	BPH; Axial T2 image shows enlargement of the CG	70
4.2	T2-weighted image shows ill-defined low-signal lesions in both central glands	72
4.3	CG tumor; erased-charcoal appearance. Axial T2, ADC map and DWI	74
4.4	T2 WI image showing four different prostate cancer cases with extra-capsular extension	75
4.5	Biopsy-proved adenocarcinoma in a 61-year-old man T2WI axial, coronal and sagittal cut	77
4.6	T2 WI shows prostate cancer and bilateral seminal vesicle involvement	78
4.7	Benign prostatic hyperplasia DWI and ADC map	80
4.8	BPH Axial T2 WI, DWI and ADC map	81
4.9	Prostate carcinoma DWI and ADC map	83
4.10	Stage T3b prostate cancer T2WI and ADC map	85
4.11	Right PZ cancer of mid-gland T2WI and ADC map	85
4.12	Left PZ cancer T1WI, T2WI and ADC map	86
4.13	MR imaging-guided prostate biopsy	87
4.14	MRI after radical retropubic prostatectomy Axial T2WI, CE fat-saturated image, DWI and ADC map	89
4.15	(ADC) value Assess Therapeutic response in prostate cancer before and after radiation therapy	90
4.16	Tumor of the left prostatic apex T2WI and ADC map	91
4.17	Images with CG carcinoma T2-weighted fast SE axial MR image and ADC map	92
4.18	Images with an SH nodule on the right side of the CG Axial T2-W fast SE MR image, DWI and ADC map	94
4.19	left CG cancer with Transverse T2-WI, ADC, FA and Surgical specimen	95

LIST OF TABLES

Tab.No	Title	Page
1	Illustrating Prostate Cancer Staging with MRI imaging.	75
2	Extra-capsular Extension Criteria on MR Images	76
3	Seminal Vesicle Invasion Criteria on MR Images	79

Introduction

INTRODUCTION

Prostate cancer (PCa) is the fifth most common cancer worldwide and causes 6% of cancer deaths in men. Transrectal ultrasonography (TRUS)-guided prostate biopsy is accepted as the gold standard for diagnosis; however, the tumor detection rate remains unsatisfactory, and the procedure may furthermore be unpleasant to the patient (**Döpfert et al., 2011**).

Central gland (CG) carcinoma composes about 30% of all prostate cancers. Although CG carcinoma tends to have low Gleason scores and low pathologic stages, up to 16% of such cancers demonstrate progression if untreated. CG cancer is a cause of false-negative findings at transrectal ultrasono-graphically guided biopsy, and, if detected and localized accurately, CG cancer can potentially be sampled for biopsy or treated by using emerging image-guided biopsy procedures and focal therapy (**CK et al., 2007**).

Benign Prostatic Hyperplasia (BPH) appears to be associated with a state of hyperplasia of the stromal and epithelial compartments, with the enzyme 5AR2 having a key role in driving organ growth (Bechis et al., 2014).

MRI has been considered as an excellent technique for detection of prostatic carcinoma. High-spatial-resolution T2-weighted rapid acquisition with a small field of view, performed with endorectal and/or external body phased-array coils, is generally used to depict prostate anatomy. On T2-weighted images, prostate cancer appears as an area of low signal intensity within the