Role of intra articular injection of autologous platelet-rich plasma in primary knee osteoarthritis

Thesis

Submitted for partial fulfillment of MD degree in Physical Medicine, Rheumatology, and Rehabilitation

By

Ahmed Ibrahim Kamal Eddin Afifi Hammad

M.B.B CH, M.Sc. Of physical medicine Faculty of medicine- Ain Shams University

Under Supervision of

Prof. Dr/ Nadia Abdel Salam El kadery

Professor of Physical medicine, Rheumatology and Rehabilitation Faculty of medicine- Ain Shams University

Prof. Dr/ Mohammed Aly Elwy

Professor of Physical medicine, Rheumatology and Rehabilitation Faculty of medicine- Ain Shams University

Prof. Dr / Eman Mahmoud Ghaniema

Professor of Physical medicine, Rheumatology and Rehabilitation Faculty of medicine- Ain Shams University

Dr/Hossam Moussa Sakr

Assistant professor of Radiodiagnosis Faculty of medicine- Ain Shams University

> Faculty of medicine Ain Shams University -2015-

<u>Acknowledgments</u>

First of all, many thanks will never be enough to express my endless gratitude to **ALLAH** for giving me the strength and support to carry out this work.

I would like to express my deep appreciation wrapped with great respect to *Prof. Dr. Nadia Abdel Salam El kadery*, Professor of Physical Medicine Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for her patience, encouragement & expert supervision.

I am greatly honored to express my gratitude to *Prof. Dr. Mohammed Aly Elwy*, Professor of Physical Medicine

Rheumatology and Rehabilitation, Faculty of Medicine, Ain

Shams University, for his precious advices and valuable observations.

Special thanks go to *Prof. Dr. Eman Mahmoud Ghaniema*, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine Ain Shams University, who not only encouraged me but also provided tireless help and continuous guidance throughout this work.

I am deeply grateful to *Dr. Hossam Moussa Sakr,* Assistant professor of Radiodiagnosis, Faculty of Medicine, Ain Shams

University, for his exceptional help and valuable cooperation to accomplish this work.

Also, I appreciate the submitted effort from *Dr. Reem El-Mallah*, lecturer in Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Ain Shams University, and my colleague *Medhat Mohamed Magdy*, resident in our department, who helped me at the practical part of the study.

Many thanks to all professors, staff and colleagues in our department, for offering help whenever I needed during this research.

I would like to express my great honor and thanks to *Prof. Dr. Hesham Salah Hammoud,* Professor of Rheumatology and Rehabilitation, Faculty of Medicine, Al-Azhar University, Cairo and to *Prof. Dr. Neven Mahmoud Taha Fouda*, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of medicine, Ain Shams University for honoring me in discussing this work.

Finally, I must thank my family for their encouragement and support not only during the period of this research but also during my whole life.

List of abbreviations

ACD-A: Anticoagulation citrate dextrose-A.

ACL: Anterior cruciate ligament.

ACR: The American College of Rheumatology.

ACS: autologous conditioned serum.

ADAMTS: A Disintegrin And Metalloprotease with

Thrombospondin motifs.

ADP: Adenosine diphosphate.

AGEs: Advanced glycation end products.

ATP: Adenosine triphosphate.

ahMSC: adult human mesenchymal stem cells.

BM-MSC: bone marrow-derived mesenchymal stem cells.

BMPs: Bone morphogenetic proteins.

CAS: computer navigated surgery.

COX-2: Cyclo-oxygenase-2.

CR: Conventional radiography.

CRP: C-reactive protein.

CT: Computed tomography.

CTGF: Connective tissue growth factor.

dGEMRIC: Delayed gadolinium enhanced MRI of cartilage.

DVT: Deep venous thrombosis.

ECM: Extracellular matrix.

EGF: Epidermal growth factor.

EP: prostaglandin E receptor.

ERKs: Extracellular signal-regulated kinases.

ESR: Erythrocyte sedimentation rate.

EULAR: European League Against Rheumatism.

FDA: Food and Drug Administration.

FGF: Fibroblast growth factor.

FGFR1: FGF receptor 1.

FGFR3: fibroblast growth factor receptor 3.

FN: Fibronectin.

Fn-fs: Fibronectin fragments.

GAG: Glucosaminoglycan.

GI: gastrointestinal.

GM-CSF: Granulocyte-macrophage colony-stimulating factor.

HA: Hyaluronic acid.

IA: intra-articular.

IGF-1: Insulin like growth factor.

IGFBPs: IGF-binding proteins.

IFN: Interferon.

IKDC: International Knee Documentation Committee.

IL: Interleukin.

IL1-Ra: IL-1receptor antagonists.

IRAPs: IL-1receptor antagonist proteins.

iNOS: inducible nitric oxide synthase.

JNK: c-Jun N-terminal kinases.

JSN: joint space narrowing

JSW: Joint space width.

KD: Kilodaltons.

KOOS: Knee osteoarthritis outcome score.

KSCRS: Knee society clinical rating scale.

LIF: Leukemia inhibitory factor.

LTB4: Leukotriene B4.

MAP: Mitogen activated protein.

MIS: minimally invasive surgery.

MMPs: Matrix metalloproteinases.

MRI: Magnetic Resonance Imaging.

MSCs: Mesenchymal stem cells.

MSK US=MSUS: Musculoskeletal ultrasonography.

NFκB: Nuclear factor kappa B.

NGF: Nerve growth factor.

NO: Nitric oxide.

NSAIDs: Non-Steroidal Anti Inflammatory Drugs.

OARSI: Osteoarthritis Research Society International.

OATS: osteochondral autologous transfer system.

Ob: obesity gene.

OMERACT: Outcome Measures in Rheumatology.

OP-1: Osteogenic protein-1.

OPG: Osteoprotegerin.

OSM: Oncostatin M.

PDGF: Platelet derived growth factor.

PGE2: Prostaglandin E2.

PGs: Proteoglycans.

PGF: Platelet growth factor.

PR-FG: platelet-rich fibrin glue.

PRP: Platelet-rich plasma.

RAGE: Receptor of advanced glycation end products.

RANK: Receptor activator of nuclear factor kappa B.

RANKL: RANK ligand.

RCT: Randomized Controlled Trial.

RNA: Ribonucleic acid.

SB: Subchondral bone.

SF-36: Short Form Health Survey.

Smad: a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the Caenorhabditis elegans gene Sma. They are intracellular proteins that transduce extracellular signals from TGF- β ligands to the nucleus where they activate downstream gene transcription

SWD: Short Wave Diathermy.

SySADOA: Symptomatic slow-acting drugs for osteoarthritis.

TENS: Transcutaneous electrical nerve stimulation.

TGF β : Transforming growth factor β .

TIMP: Tissue inhibitors of metalloproteinase.

TKA: Total Knee Arthroplasty.

TKR: Total knee replacement (introduction)

TKR: Tyrosine kinase receptor.

TNF- α : Tumor necrosis factor- α .

TNF-R: TNF receptor.

Toll like receptors: are classes of proteins that play a key role in the innate immune system. They are single, membrane-spanning, non-catalytic receptors usually expressed in sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes

TRAP (SFLLRN): Thrombin Receptor Activating Peptide

QOL: Quality Of Life.

UKA: Uni-compartmental Knee Arthroplasty.

uPA: urokinase-type plasminogen activator.

US: Ultrasound.

VAS: Visual analogue scale.

VEGF: Vascular endothelial growth factor.

WOMAC: Western Ontario and McMaster Osteoarthritis

Index.

List of Contents

Ti	itle F	Page No.
	troduction	
	•	
Re	eview of Literature	
•	Knee osteoarthritis	9
	Prevalence	10
	Etiology and risk factors1	1
	Pathogenesis of OA	19
	Pathology of the articular cartilage	55
	Clinical features	64
	Investigations in knee OA	70
	Laboratory findings	70
	Imaging	71
•	Sonography in knee osteoarthritis	87
•	Treatment of knee osteoarthritis	111
No	on-surgical treatment of knee osteoarthritis	112

Non pharmacological Therapy112
Pharmacological therapy123
Biologic therapy137
Gene therapy157
Surgical treatment in knee osteoarthritis 159
• Platelet rich-plasma(PRP)165
Platelet anatomy and function165
Platelet actions166
Preparation of PRP180
Therapeutic applications193
Safety issues196
Patients and Methods197
Results
Discussion244
Summary and Conclusion260
Recommendations
References
Arabic Summary

List of Figures

Figure No.	Title	Page No.		
Figure No. Title Page No. Fig (1): Shows molecular and cellular mechanisms that				
perpetuate OA	۸	24		
Fig (2): Cytokine expression in OA and movement55				
Fig (3): Schematic summary of the macromolecular				
organization o	of mature articular c	artilage58		
Fig (4): ShowsA) antero-posterior weight bearing				
radiographs of a patient. B) A magnified view of the right				
knee joint		74		
Fig (5): Show	s antero-posterior f	ixed-flexion radiograph		
of a study part	ticipant	74		
Fig (6): Shows bone marrow edema and bone marrow				
lesions depicte	ed on the medial fer	nur on a T2-weighted fat		
suppressed M	RI (A) and medial t	ibial plateau on an		
intermediate-v	weighted fat suppres	ssed MRI (B)79		
Fig (7): Show	s different techniqu	es of MRI compositional		
assessment of	knee cartilage	81		
Fig (8): Show	s Images of the med	dial and lateral mensici		
pre-surgery (A	A) and at 2 follow-u	p time points (B, C) 81		
Fig (9): Show	s compositional MI	R imaging82		
Fig (10): Shows longitudinal sonographic images of the				
medial joint li	ne	90		

Fig (11): Shows sagittal sonographic image of the
suprapatellar pouch91
Fig (12): Shows coronal images over the distal femur in
full flexion93
Fig (13): Shows complicated Baker cyst: intrabursal
hemorrhage94
Fig (14): examples of knee cartilage degenerative US
grades (0, 1, 2A, 2B, 3)
Fig (15): Shows femoral (left arrow) and tibial (right
arrow) osteophytes - medial longitudinal view104
Fig (16): Shows knee effusion in longitudinal supra-
patellar view
Fig (17): Shows sonographic Visualization of Needle
Placement108
Fig (18): Shows A (Before) and B (After) a
sonographically guided injection
Fig (19): Shows sonographically guided intraarticular
knee injection via the midlateral approach110
Fig (20): Structures of the TNF antagonists144
Fig (21): Contrast MRI scan of the patient's right knee
before (left) and 6 months after initiation of adalimumab
therapy145

Fig (22): Results of MRI performed preoperatively (left)
and postoperatively (right)156
Fig (23): Gene transfer approaches for the treatment of
cartilage defects
Fig (24): shows schematic overview of a resting and
activated platelet166
Fig (25): Shows the different cascade stages in hemostasis
after tissue injury169
Fig (26): Shows schematic illustration of the role of
platelet derived growth factors during the different stages
of the wound healing process171
Fig (27): Shows graphical representation of a "bio-
engineered" bone graft with platelet gel179
Fig (28): Shows a peripheral blood smear of whole blood
with a platelet count of 276.000 per μL 181
Fig (29): Shows platelet rich plasma smear182
Fig (30): Shows sonography machine LOGIQ 500 pro
series, GE medical systems, Germany217
Fig (31): Shows US grading of OA cartilage219
Fig (32): Shows (a) centrifuge device, (b) 50 ml falcon
tube, and (c) venesection set [butterfly 19-21gauge plus 60
ml syringe]221
Fig (33): Shows US guided injection of the knee222

Fig (34): Shows knee injection using the antero-medial		
approach224		
Fig (35): Comparison between study groups regarding		
VAS score before and after study232		
Fig (36): Comparison between study groups regarding		
IKDC2000 before and after study234		
Fig (37): Comparison between study groups regarding		
sonographic grade before and after study236		
Fig (38): Shows Rt knee assessment showing blurring of		
the margin of the cartilage band (grade2)237		
Fig (39): Shows Rt knee assessment showing blurring of		
the margin of the cartilage band (grade2)237		
Fig (40): Shows Rt knee assessment showing obliteration		
of the margin of the cartilage band at the lateral femoral		
condyle (grade 2)238		
Fig (41): Shows Rt knee assessment showing blurring,		
obliteration of the margin and narrowing of the cartilage		
band (grade3)238		
Fig (42): Shows Lt knee assessment showing blurring,		
obliteration of the margin and narrowing of the cartilage		
band (grade3)239		
Fig (43): Shows Rt knee assessment showing blurring,		
obliteration of the margin and narrowing of the cartilage		