

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

INFLUENCE OF SEMI-SOLID CASTING PROCESS PARAMETERS ON MICROSTRUCTRAL CHARACTERISTICS OF MECHANICALLY STIRRED A356 ALUMINUM ALLOY

B116.0

By

Eng. LAILA SHEHATA YOUSEF EL-SAYED

A Thesis Submitted to
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In METALLURGICAL ENGINEERING

To

Department of Mining, Petroleum and Metallurgy, Faculty of Engineering, Cairo University

June 2007

INFLUENCE OF SEMI-SOLID CASTING PROCESS PARAMETERS ON MICROSTRUCTRAL CHARACTERISTICS OF MECHANICALLY STIRRED A356 ALUMINUM ALLOY

By

Eng. LAILA SHEHATA YOUSEF EL-SAYED

A Thesis Submitted to
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in

METALLURGICAL ENGINEERING

Under the supervision of

Prof. Dr. IMAN S. El-MAHALLAWI

Department of Mining, Petroleum and Metallurgy, Faculty of Engineering, Cairo University

Dr. Eng. RAGAEE M. RASHAD

Department of Mechanical Design and Production, Faculty of Engineering, Cairo University

Dr. Eng. TAMER S. MAHMOUD

Department of Mechanical Engineering,-Faculty of Engineering, Banha University

To

Department of Mining, Petroleum and Metallurgy, Faculty of Engineering, Cairo University

June 2007

INFLUENCE OF SEMI-SOLID CASTING PROCESS PARAMETERS ON MICROSTRUCTRAL CHARACTERISTICS OF MECHANICALLY STIRRED A356 ALUMINUM ALLOY

By Eng.LAILA SHEHATA YOUSEF EL-SAYED

> A Thesis Submitted to Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

METALLURGICAL ENGINEERING

Approved by the examining committee:

Prof. Dr. IMAN El-MAHALAWI

Prof. Dr. ABD ELHAMEED HUSSEN

Member A A Hose

Prof. Dr. TAREK AHMED KHALIFA

Member Tajel Halfa

37 Main Advisor

To Department of Mining, Petroleum and Metallurgy, Faculty of Engineering, Cairo University

June 2007

	•	•	
.* (
_			

CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	vii
ACKNOWLEDGEMENTS	xiii
ABESTRACT	xiv
CHAPTER 1: INTRODUCTION	1
CHAPTER 2 : LITRATURE SURVEY	5
2.1. Introduction	5
2.2. Rheological Effects (Phenomena) In SSM	6
2.2.1. Dendritic Solidification	6
2.2.2. Non-dendritic Solidification	7
2.2.3. Rheological Properties of SSM	8
2.3. Rheological Phenomena of SSM	9
2.4. Mechanisms of formation of non-dendritic	12
structure	
2.5. Microstructure of Semisolid State Processed	20
Materials	
2.5.1. Effect of Processing Parameters on the	23
Microstructures of SSM	
2.5.1.1. Effect of Shear Rate- Time Combination	23
2.6. SSM Processing Technologies	27
2.6.1. Rheocasting	27
2.6.2. Thixoforming	24
2. 6. 3. Steps of Producing Thixoforming Components	28
2.6.3.1.Technologies for Producing Non-dendritic Feed	28
Stock	
2. 6. 3.1.1. Mechanical Stirring	30

		,	
			·
	·		
		-	
·			

2. 6. 3.1.2. Magnetohydrodynamic (MHD) Stirring		
2. 6.3.1.3. Stress Induced and Melt Activated (SIMA)		
Process		
2. 6. 3.1.4. Spray Casting		
2. 6. 3.1.5. Liquidus Casting	33	
2. 6. 3.1.6. Ultrasonic treatment	34	
2. 6. 3.1.7. Chemical grain refining	35	
2.6.3.1.8. New Rheocasting Process (NRC)	35	
2.6.4. Reheating Process	36	
2. 6. 4. 1. Reheating Parameters	37	
2. 6. 4.2. Reheating Mechanism	38	
2. 6. 4.2.1. Effect of Solid Fraction on Reheating	38	
Mechanism		
2.6.4.2.2. Effect Thermo-mechanical History of the	38	
Alloy on Reheating Mechanism		
2.6.4.2.3. Effect of Initial Particle Morphology on	38	
Reheating Mechanism		
2.6.4.2.4. Effect of Technologies of Production of Non- dendritic Feed Stock on Reheating Mechanism	40	
2.6.5. Semisolid Forming (SSF)	41	
2.6.5.1. Thixoforging	41	
2. 6.5.2. Thixomoulding	43	
2.6.5.3. Thixoextrusion	44 44	
2.6.5.4. Rheomoulding	44	
CHAPTER 3: EXPEREMENTAL WORK	46	
3.1. Material	46	
3.2.Determination of The Variation Of Liquid Fraction	46	
With Temperatures	43	
3.2.1.Determination of Liquid Fraction Using DSC Approach	48	
3.2.2.Determination of Liquid Fraction Using	40	
Thermodynamic Modeling Technique		

		•	
•			
•			
			•