

PRODUCTION OF BIODIESEL FROM NON EDIBLE VEGETABLE OIL

By

Abdallah Sayed Ahmed Ali El-Gharbawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

PRODUCTION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OIL

By
Abdallah Sayed Ahmed Ali Elgharbawy
A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

Under the Supervision of

Prof. Dr. Fatma Elzahraa Hanafy Ashour Professor of Chemical Engineering Head manager of Chemical Engineering Dept. Faculty of Engineering, Cairo University Prof. Dr. Nour Shafik El-Gendy
Professor of Petroleum & Environmental Biotechnology.
Head Manger of Petroleum Biotechnology Lab.
Egyptian Petroleum Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

PRODUCTION OF BIODIESEL FROM NON EDIBLE VEGETABLE OIL

By Abdallah Sayed Ahmed Ali Elgharbawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

Chemical Engineering

Approved by the:

Prof. Dr. Fatma Elzahraa Hanafy Ashour Chemical Engineering Department, Cairo University

Prof. Dr. Nour Shafik Elgendy Egyptian Petroleum Research Institute

Prof. Dr. Samya Sobhy Mohamed Younis Chemical Engineering Department, Cairo University

Prof. Dr. Mohamed Mohamed El-Sokary Egyptian Petroleum Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Abdallah Sayed Ahmed Ali El-Gharbawy

Date of Birth: 15/05/1988 Nationality: Egyptian

E-mail: Ab_pet_88@hotmail.com

Phone: 01123666693 Address: Maadi- Cairo Registration Date: 01/03/2011

Awarding Date: 2016

Degree: Master of Science.

Department: Chemical Engineering Department

Supervisors:

Prof. Dr. Fatma Elzahraa Hanafy Ashour

Prof. Dr. Nour Shafik El-Gendy

Examiners:

Prof. Dr. Fatma Elzahraa Hanafy Ashour

Chemical Engineering Department, Cairo University

Prof. Dr. Nour Shafik Elgendy Egyptian Petroleum Research Institute

Prof. Dr. Samya Sobhy Mohamed Younis Chemical Engineering Department, Cairo University Prof. Dr. Mohamed Mohamed El-Sokary

Egyptian Petroleum Research Institute

Title of Thesis:

PRODUCTION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OIL

Key Words:

Biodiesel, Transesterification, Used cooking oil.

Summary:

The depletion of fossil fuel forces the world to look for alternative ways for energy production. The most important alternative method is biofuels production. Biofuels are a type of fuel produced from natural resources such as agriculture, agriculture wastes, used cooking oil and biological creatures. Production of biodiesel from non edible vegetable oils is done through a chemical reaction called transesterification reaction. The oil used in this work is waste cooking oil which cannot be recycled or valid to human use. Transesterification is a chemical reaction at which the organic group (alkyl) of an alcohol is substituted with the organic group of a triglyceride producing fatty acid alkyl ester and glycerol. Transesterification reaction is catalyzed by addition of a base catalyst

ACKNOWLEDGMENTS

I provide my acknowledgments to all people who gave and still give their support. I have to thank Prof. Dr. Fatma Ashour, Prof. Dr. Nour Elgendy, Prof. Dr. Samya Sobhy, Prof. Dr. Mohamed Mohamed El-sokary for providing me with very precious advices and ideas for all the sections inside this master study that helped me a lot bringing out the best of me.

I especially want to express my sincere gratitude to my parents *Dr. Sayed Ahmed Elgharbawy*, *Dr. Maymona Temerk*, *Mr. Mohamed Gabllah and Mrs. Eman Abdelmaksoud* who gives me a great support in my work and my life.

My deepest gratitude to my wife *Eng. Marwa Gaballah* for believing in me, encouraging me to complete this thesis and beat the barriers.

TABLE OF CONTENTS

TABLE OF CONTENTS	 II
LIST OF TABLES	 \mathbf{V}
LIST OF FIGURES	 VII
ABSTRACT	 X
CHAPTER 1: INTRODUCTION	 1
CHAPTER 2: LITERATURE VIEW	 3
2.1. INTRODUCTION	 3
2.2. RELATED WORK	3
2.2.1. Biodiesel Feedstocks	 3
2.2.1.1. Edible Oil	 4
2.2.1.2. Non Edible Oil	 5
2.2.2. Transesterification Methods	 7
2.2.3. Transesterification Steps	 12
2.2.3.1. Removal Of Solid particles Impurities	 12
2.2.3.2. Water Drying	 12
2.2.3.3. Treating High FFA Waste Vegetable Oil	 13
2.2.3.4. Transesterification Reaction	 14
2.2.3.5. Biodiesel Purification	 14
2.2.3.6. Water Washing	 15
2.2.4. Factors Affecting Biodiesel Production	 16
2.2.4.1. Reaction Temperature	 16
2.2.4.2. Molar Ratio	 16
2.2.4.3. Type Of Catalyst	 16
2.2.4.4. Catalyst Concentration	 17
2.2.4.5. Mixing Rate	 17
2.2.4.6. Reaction Time	 17
2.3. SUMMARY	 18
2.3.1. Steps Of Biodiesel Production	 18
2.3.2. Types Of Transesterification	 18
2.3.3. Alcohols Used In Transesterification	20
Process	 20
CHAPTER 3: MATERIALS AND EXPERIMENT	 21
3.1. MATERIAL AND METHODS	 21
3.1.1. Research Methodology	 21
3.1.2. Materials Used In Experiments	 21
3.1.3. Equipments Used In Experiments	22

3.1.4. Methods Of Biodiesel Production	 23
3.1.4.1. Feedstock Pre-Treatment	 23
3.1.4.2. Measuring Free Fatty Acid	 23
3.1.4.3. Removal Of Solid Particles Impurities	 23
3.1.4.4. Water Removal	 23
3.1.4.5. Preparation Of Alcohol And Catalyst	 24
3.1.4.6. Alkaline Transesterification Process	 24
3.1.4.7. Biodiesel Purification	 24
3.1.4.8. Water Washing	 24
3.1.4.9. Drying of Produced Biodiesel	 24
3.1.5. Determination Of Biodiesel Properties	 25
3.1.5.1. Acid Value	 25
3.1.5.2. Density	 25
3.1.5.3. API Gravity	 26
3.1.5.4. Aniline Point	 26
3.1.5.5. Cetane Number	 26
3.1.5.6. Cloud Point And Pour Point	 27
3.1.5.7. Flash Point	 27
3.2. EXPERIMENTS	 28
3.2.1. Experimental Design	 29
CHAPTER 4: RESULTS AND DISCUSSION	 31
4.1. YIELD OF EXPERIMENT	 31
4.2. LINEAR REGRESSION ANALYSIS	 31
4.3. MULTIPLE REGRESSION ANALYSIS	 40
4.3.1. Interactive Effect On Final Biodiesel	 45
4.4. OPTIMUM CONDITIONS	 48
4.5. BIODIESEL STANDARD PROPERTIES	 50
4.6. PROPERTIES OF PRODUCED BIODIESEL	 51
4.7. PRODUCED BIODIESEL COMPONENTS	 54
CHAPTER 5: COST ANALYSIS	55
5.1. TYPES OF COST ESTIMATION	 55
5.1.1. Analogous Estimation	 55
5.1.2. Parametric Estimation	 55
5.1.3. Three-Point Estimation	 55
5.2. DESIGN OF COST ANALYSIS	56
5.2.1. Capital Expenditure (CAPEX)	 56
5.2.1.1. Purchased Equipment Cost (PEC)	 56
5.2.1.2. Other CAPEX	 60

REFERENCES	 7 9
CONCLUSION	 77
5.3.3. Operating Assumptions	 65
5.3.2. Economic Assumptions	 65
5.3.1. Technical Assumptions	 65
5.3. COST ANALYSIS BASIS	 65
5.2.2.2. Variable Costs	 64
5.2.2.1. Fixed Costs	 64
5.2.2. Operating Costs (OPEX)	 64

LIST OF TABLES

T able 2.1:	Comparison between methanol and ethanol in acid catalyzed	 8
Table 2.2:	transesterification Comparison between catalytic and	 12
Table 2.3:	supercritical alcohol transesterification Comparison between methanol and ethanol in transesterification reaction	 20
Table 3.1:	Methanol weight (g)	 28
Table 3.2:	Experiment setup	 30
Table 4.1:	Feedstock specifications	 31
Table 4.2:	Experimental and predicted results of linear regression	 32
Table 4.3:	Analysis of variance of the linear regression model	 34
Table 4.4:	Experimental and predicted results of multiple regression	 43
Table 4.5:	Analysis of variance of the multiple regression model	 44
Table 4.6:	Optimum Conditions from experimental design	 48
Table 4.7:	The results at Optimum conditions from experimental design	 48
Table 4.8:	Optimum runs	 49
Table 4.9:	Biodiesel ASTM standard specifications	 50
Table 4.10:	Produced biodiesel specifications	 51
Table 4.11:	Produced Biodiesel components	 54
Table 5.1:	Purchased equipment cost	 59
Table 5.2:	Total capital cost	 62
Table 5.3:	Biodiesel project technical and economic assumptions	 67
Table 5.4:	Biodiesel operating assumptions	 68
Table 5.5:	Biodiesel labors assumptions	 68
Table 5.6:	Expected feedstocks and product price till 2037	 69
Table 5.7	Expected utilities prices till 2037	70

Table 5.8:	Expected operating cost till 2037	 71
Table 5.9:	Revenue of biodiesel project till 2037	 73
Table 5.10:	Income statement	 74
Table 5.11:	An estimation for production of 1 litre biodiesel	 76

LIST OF FIGURES

Figure 2.1:	UK Biodiesel feedstock production	 4
Figure 2.2:	Palm seeds and palm oil	 4
Figure 2.3:	Soybean oil	 5
Figure 2.4:	Rape seeds	 5
Figure 2.5:	Jatropha oil and Jatropha seeds	 6
Figure 2.6:	Used cooking oil	 7
Figure 2.7:	Mechanism of base catalyst transesterification reaction	 10
Figure 2.8:	Biodiesel and glycerol layers	 15
Figure 2.9:	Water washing, the upper layer is biodiesel, the lower layer is distilled water	 15
Figure 3.1:	Equipment connection	 22
Figure 4.1:	Box graph showing the analysis of experiments with different factors on transesterification process	 33
Figure 4.2:	Box graph showing the relation between produced and predicted yields with experiments on the transesterification process	 34
Figure 4.3:	Box graph showing the relation between M:O ration and yield	 36
Figure 4.4:	Box graph showing the relation between catalyst concentration and yield	 37
Figure 4.5:	Box graph showing the relation between reaction temperature and yield	 38
Figure 4.6:	Box graph showing the relation between reaction time and yield	 39
Figure 4.7:	Box graph showing the relation between mixing rate and yield	 40
Figure 4.8:	The RSM plots	 47
Figure 5.1:	Batched stirred reactor	 57
Figure 5.2:	Vapor-liquid separator	 57

Figure 5.3:	Mixer	 58
Figure 5.4:	Heat exchanger	 58
Figure 5.5:	Alkali-catalyzed transesterification of WCO-process	 63
Figure 5.6:	Total revenue versus total OPEX	 75
Figure 5.7:	Biodiesel production cost and petro- diesel price	 75
Figure 5.8:	Net income after taxes versus depreciation	 76

ABBREVIATION

ASTM American Standard Test Method

RCCD Rotatable Central Composite Design

CAPEX Capital Expenditure

OPEX Operational Expenditure

PEC Purchased Equipment Cost

FFA Free Fatty Acid

WCO Waste Cooking Oil

M:O Methanol to Oil ratio

FAME Fatty Acid Methyl Ester

GC Gas Chromatograph

FID Flame Ionization Detector

KTA Kilo Tons per Annum

RSM Response surface methodology

CV Calorific Value

ABSTRACT

The depletion of fossil fuel forces the world to look for alternative ways for energy production. The most important alternative method is biofuels production. Biofuels are a type of fuel produced from natural resources such as agriculture, agriculture wastes, used cooking oil and biological organisms. Production of biodiesel from non edible vegetable oils is done through a chemical reaction called transesterification reaction. The feedstock used in this work was non edible waste cooking oil which cannot be recycled or valid to human use. Transesterification is a chemical reaction at which the organic group (alkyl) of an alcohol is substituted with the organic group of a triglyceride producing fatty acid alkyl ester (FAME) and glycerol. Transesterification reaction was catalyzed by addition a base catalyst. The conversion of triglycerides to alkyl esters (biodiesel) depends up on certain parameters that affect the biodiesel production process such as catalyst concentration, methanol to waste cooking oil ratio, temperature, mixing rate and reaction time.

The first part of this work is concerning with studying the effect of each reaction parameters on biodiesel yield and its specifications, specifying the optimum operating conditions for alkaline transesterification reaction through application of linear regression analysis and multiple regression analysis which are used to predict the responses change when one of variable is varied. The statistical software Design Expert 6.0.7 (Stat-Ease Inc., Minneapolis, USA) was used for design of experiments, regression and graphical analyses of the data obtained. The triglycerides conversion to biodiesel reaches to 99.2%. The high conversion obtained was based on the following conditions: methanol to oil molar ratio of 7.54:1, catalyst concentration of 0.875%, 1.17 hr of reaction time, temperature of 52 °C, mixing rate 266 rpm. The produced biodiesel quality is agreeing with the American standard testing method (ASTM), all properties such as cetane number, acid number, flash point, pour point, cloud point and aniline point are in the standard range. The calorific value of the produced biodiesel is 39.6 MJ/kg which is higher than the standard biodiesel calorific value by 6 %. The properties of produced biodiesel qualifies its utilization in vehicles instead of petrodiesel especially that the biodiesel is free of any sulfur.

The second part of work related to technical feasibility study for biodiesel plant build up using the alkaline transesterification process for more than 100,000 ton of used cooking oil. Apply the financial model template to analyze the economic effect. MICROSOFT EXCEL PROGRAM is one of the mathematical programs that used in establishing projects financial model. The main advantage of using this program is its availability and simplicity that enable any researcher to check the profitability of his ideas regarding any project and also optimize the project to get the optimum project configuration. The project will achieve a good income around 4 million US \$ every year and the total net income during the life cycle of project is 72.5 million US \$. The technical feasibility study concludes that the production cost of one litre biodiesel from used cooking oil is 0.515 \$ while the global price of petro-diesel is 0.678 \$/ litre and global biodiesel current price is 1 \$/litre.

Keywords: Biodiesel, Transesterification, Used cooking oil.

CHAPTER 1: INTRODUCTION

Biodiesel is a fatty acid alkyl ester which produced from biological sources such as vegetable oil, animal fats wastes and algae. Biodiesel produced from renewable resources is considered the most important biofuel. Production of biodiesel from non edible vegetable oil hits a lot of benefits. It is economical as biodiesel production from waste cooking oil is lower in cost than production of petro-diesel from high cost crude oil in addition biodiesel plants does not cost money like refining plants. It is renewable as biodiesel is produced from renewable resources such as used cooking oil or biological organisms while petro-diesel made from finite sources. Production of biodiesel is simple process does not need a license or a complicated technology. Biodiesel is better for environment as it does not contain sulfur. Biodiesel which its specification achieves the international standard limits can be used directly or it can be blended with conventional diesel in diesel engine as the calorific value of petro-diesel is higher than for biodiesel.

The feedstocks of biodiesel varies between edible oil such as the oil of sunflower, soybean and coconut or non-edible oil such as the oil of Jatropha, jojoba and used cooking oil. Biodiesel is produced from vegetable oil through transesterification reaction.

There are four types of the transesterification processes, acid-catalyzed transesterification, alkaline catalyzed transesterification, enzyme catalyzed transesterification and non catalyzed supercritical methanol. The alkaline catalyzed transesterification method was used in this work as it is the fastest reaction, higher yield, mild reaction condition, low cost, less corrosive, less toxicity.

Alkaline catalyzed transesterification steps are three major steps: the first step is feedstock treatment which includes measuring feedstock free fatty acid, removal of insoluble impurities and water removal. The second step is the alkaline transesterification process which includes addition of alcohol and catalyst to the oil at specified temperature and mixing rate for certain time. The final step of transesterification process is biodiesel treatment which includes biodiesel purification, water washing, and water removal from produced biodiesel. There is many factors affecting biodiesel production, these factors are: methanol to oil ratio, catalyst concentration, temperature, time and mixing rate. The effect of each factor on the final yield is studied in this work through using rotatable central composite design (RCCD) as it allows usage of few numbers of experiments to cover wide range of variables. Linear regression method and multiple regression method were used to analyze the results. Multiple regression method is more accurate as it studies the interactive between factors and quadratic effects of factor while linear regression studies only one factor effect. Specifications of produced biodiesel are standard range and it can be blended with diesel engine.

Cost estimation is a prediction of cost and budget required to build up and operate a plant. The preliminary cost estimation in this work depends on the optimum condition obtained from the experimental work and parametric estimation way which includes a relationship between relevant historical data and other variables. The cost estimation model applied on a plant with capacity