Effect of Hand Anthropometry on Grip Strength in Normal Subjects

Thesis

Submitted to the Department of Biomechanics in Partial Fulfillment of the Requirements for the Master Degree in Physical Therapy

By Ahmed Atteya Ashour

B.Sc., Physical Therapy, October 6 University 2004 Department of Biomechanics

Supervisors

Prof. Dr. Ahmed Waheed Mustafa

Professor of Ergonomics,
Manager of the Ergonomics
Design Center
Faculty of Applied Arts
Helwan University

Prof. Dr. Alaaddin Abdelhakim Balbaa

Assistant Professor in the Department of Physical Therapy for Musculoskeletal Disorder and its Surgery Faculty of Physical Therapy Cairo University

Dr. Nagui Sobhi Nassif

Lecturer of Biomechanics Department of Biomechanics Faculty of Physical Therapy Cairo University

Faculty of Physical Therapy Cairo University 2009 Effect of Hand Anthropometry on Grip Strength in Normal Subjects/Ahmed Atteya Ashour: Cairo University, Faculty of Physical Therapy. Department of Biomechanics. Supervisors: Prof. Dr. Alaaddin Abdelhakim Balbaa, Prof. Dr. Ahmed Waheed Mustafa, and Dr. Nagui Sobhi Nassif. Thesis: M.Sc; Biomechanics, 2009.

Abstract

Force capabilities of the hand are affected by many factors including hand anthropometry. The purpose of this study to investigate the effect of structural anthropometry of the hand (hand length, palm palm breadth, fingers lengths, fingers breadths, wrist circumference, and forearm circumference) and functional anthropometry of the hand (grip reach and elbow grip length) on the hand grip strength in normal University students. One hundred normal students volunteered to participate in this study (50 males and 50 females). The mean age of the male group was 20.6 ± 1.26 years and female group was 20.14 ± 0.82 years. The mean weight of the male group was 76.44 ± 9.86 kg and the female group was 62.77 ± 9.54 kg. The mean height of the male group was 176.64 ± 6.66 cm and the female group was 157.16 ± 14.74 cm. Comparison between male and female groups was performed by using statistical unpaired t-test. The correlation among each one of the structural and functional anthropometry and the hand grip strength were studied using Multiple regression analysis and the Pearson Product Moment Correlation Coefficient (r). All statistical analysis was performed using StatGraphics Plus software with a significance level of 0.05. Statistical analysis revealed that there were significant differences (p < 0.05) between males and females regarding the eight variables (hand length, palm length, wrist circumference, MCP joint circumference, forearm circumference, grip reach, elbow grip length, and hand grip strength. For the remaining eleven variables, statistical test showed no significant differences between males and females. Regarding the relationship between hand length, palm length, palm breadth, fingers lengths, wrist circumference, MCP joint circumference, forearm circumference, grip reach, elbow grip length, statistical analysis revealed a significant moderate strong relationship between each one of these variables and the hand grip length except for the thumb finger length. The study supports the need for pre-employment screening and it is also useful for ergodesign application of hand tools and devices. The data are also needed in sports to search the talented individuals.

Keywords: Hand anthropometry, Grip strength, Body composition, Ergonomics.

Acknowledgement

First of all, thanks *Allah*, the most merciful and most compassionate for helping me to conduct this study.

Second, I would like to give my appreciation and thanks to *Prof. Dr Mohamed Fouad Ibrahim Khalil* Professor and Chairman of the Department of Biomechanics, Faculty of Physical Therapy, Cairo University for his continuous encouragement.

I owe great acknowledgement and thanks to *Prof. Dr Azza Abdelaziz Abdelhady* Professor in the Department of Internal Medicine and Geriatrics, Faculty of Physical Therapy, Cairo University for her endless help and support.

I would also like to offer a very sincere acknowledgement to *Prof. Dr Alaaddin Abdelhakim Balbaa*, Assistant Professor in the Department of Musculoskeletal Disorders and its Surgery, Faculty of Physical Therapy, Cairo University for his help in supervising my work.

I express my deep thanks to *Dr Nagui Sobhi Nassif*, Lecturer of Biomechanics, Department of Biomechanics, Faculty of Physical Therapy, Cairo University for his help and comments.

My appreciation is also extended to the *students* who volunteered to participate in this study for their patience and cooperation.

My heartfelt thanks, gratitude, unlimited respect and love are devoted to *my family* for their love, patience, help throughout stages in this work and all steps in my life *whom I dedicate this work*.

Table of Contents

List of Tables V	IX
Chapter I Introduction Statement of the problem Purpose of the study Significance of the study Delimitations Limitations Hypothesis	4 4 4 5 5
Chapter II Literature Review	6
Subject selection Instrumentation Procedure Structural anthropometric measurements Functional anthropometric measurements	31 31 33 33 38 40 40
Chapter IV Results	42
Chapter V Discussion	66

Chapter VI	
Summary, Conclusion and Implementation	76
Summary	76
Conclusion	77
Implementation	78
Recommendations	79
References	80
Appendix	87
Arabic Summary	

List of Abbreviations

BMC Bone Mineral Content

BMD Bone Mineral Density

BMI Body Mass Index

CTD Cumulative Trauma Disorders

DXA Dual energy X ray Absorptiometry

LBM Lean Body Mass

MCP Metacarpophalangeal joint

NS Non Significant

r Correlation Coefficient

Sig Significant level

List of Figures

Figure No	Title	Page No
Figure (2-1)	Examples of structural anthropometry of the hand	6
Figure (2-2)	Examples of functional anthropometry of the hand. A) is the grip reach, B) is the elbow grip length	7
Figure (2-3)	Muscle mechanics during a strong grip	10
Figure (2-4)	Hand held dynamometers used for measurement of hand grip strength	11
Table (3-1)	Slider caliper which was used for measurement of finger breadth	31
Figure (3-2)	Measurement tape which was used for longitudinal and round measurements	32
Figure (3-3)	15 mm diameter rod used for determining grip axis	32
Figure (3-4)	Jammar Hand Grip Dynamometer used for the measurement of hand grip strength	32
Figure (3-5)	Measurement of hand length	33
Figure (3-6)	Measurement of palm length	34
Figure (3-7)	Measurement of hand breadth at metacarpals	34
Figure (3-8)	Measurement of fingers lengths	35
Figure (3-9)	Measurement of fingers breadths	36

Figure (3-10)	Measurement of wrist circumference	37
Figure (3-11)	Measurement of Metacarpophalangeal (MCP) joint circumference	37
Figure (3-12)	Measurement of forearm circumference	38
Figure (3-13)	Measurement of grip reach	39
Figure (3-14)	Measurement of elbow grip length	39
Figure (3-15)	Measurement of hand grip strength	41
Figure (4-1)	Mean values of age, weight and height in both normal male and female groups	46
Figure (4-2)	Scatter diagram showing the direct moderately strong relationship between hand length (cm) and hand grip strength (kg) in normal subjects	48
Figure (4-3)	Scatter diagram showing the direct moderately strong relationship between palm length (cm) and hand grip strength (kg) in normal subjects	49
Figure (4-4)	Scatter diagram showing the direct moderately strong relationship between palm breadth (cm) and hand grip strength (kg) in normal subjects	50
Figure (4-5)	Scatter diagram showing the direct relatively weak relationship between thumb length (cm) and hand grip strength (kg) in normal subjects	51
Figure (4-6)	Scatter diagram showing the direct moderately strong relationship between index finger length (cm) and hand grip strength (kg) in normal subjects	52
Figure (4-7)	Scatter diagram showing the direct moderately strong relationship between middle finger length (cm) and hand grip strength (kg) in normal subjects	53

Figure (4-8)	Scatter diagram showing the direct moderately strong relationship between ring finger length (cm) and hand grip strength (kg) in normal subjects	54
Figure (4-9)	Scatter diagram showing the direct moderately strong relationship between little finger length (cm) and hand grip strength (kg) in normal subjects.	55
Figure (4-10)	Scatter diagram showing the direct relatively weak relationship between thumb breadth (cm) and hand grip strength (kg) in normal subjects	56
Figure (4-11)	Scatter diagram showing the direct relatively weak relationship between index finger breadth (cm) and hand grip strength (kg) in normal subjects	57
Figure (4-12)	Scatter diagram showing the direct relatively weak relationship between middle finger breadth (cm) and hand grip strength (kg) in normal subjects	58
Figure (4-13)	Scatter diagram showing the direct relatively weak relationship between ring finger breadth (cm) and hand grip strength (kg) in normal subjects	59
Figure (4-14)	Scatter diagram showing the direct relatively weak relationship between little finger breadth (cm) and hand grip strength (kg) in normal subjects	60
Figure (4-15)	Scatter diagram showing the direct moderately strong relationship between wrist circumference (cm) and hand grip strength (kg) in normal subjects	61
Figure (4-16)	Scatter diagram showing the direct moderately strong relationship between metacarpophalangeal joint circumference (cm) and hand grip strength (kg) in normal subjects	62

Figure (4-17)	Scatter diagram showing the direct moderately strong relationship between forearm circumference (cm) and hand grip strength (kg) in normal subjects	63
Figure (4-18)	Scatter diagram showing the direct moderately strong relationship between grip reach (cm) and hand grip strength (kg) in normal subjects	64
Figure (4-19)	Scatter diagram showing the direct moderately strong relationship between elbow grip length (cm) and hand grip strength (kg) in normal subjects	65
Figure (5-1)	The resultant bowstringing force at the MCP joint	71

List of Tables

Table No	Title	Page No
Table (4-1)	Mean values and standard deviation of age, weight and height in both male and female groups	46
Table (4-2)	Comparison between male and female subjects in all dependent (hand grip strength) and independent variables (structural and functional anthropometric measurements)	47
Table (4-3)	Correlation coefficient between hand length (cm) and hand grip strength (kg) in normal subjects	48
Table (4-4)	Correlation coefficient between palm length (cm) and hand grip strength (kg) in normal subjects	49
Table (4-5)	Correlation coefficient between palm breadth (cm) and hand grip strength (kg) in normal subjects	50
Table (4-6)	Correlation coefficient between thumb length (cm) and hand grip strength (kg) in normal subjects	51
Table (4-7)	Correlation coefficient between index finger length (cm) and hand grip strength (kg) in normal subjects	52
Table (4-8)	Correlation coefficient between middle finger length (cm) and hand grip strength (kg) in normal subjects	53
Table (4-9)	Correlation coefficient between ring finger length (cm) and hand grip strength (kg) in normal subjects	54
Table (4-10)	Correlation coefficient between little finger length (cm) and hand grip strength (kg) in normal subjects	55

Table (4-11)	Correlation coefficient between thumb breadth (cm) and hand grip strength (kg) in normal subjects	56
Table (4-12)	Correlation coefficient between index finger breadth (cm) and hand grip strength (kg) in normal subjects	57
Table (4-13)	Correlation coefficient between middle finger breadth (cm) and hand grip strength (kg) in normal subjects	58
Table (4-14)	Correlation coefficient between ring finger breadth (cm) and hand grip strength (kg) in normal subjects	59
Table (4-15)	Correlation coefficient between little finger breadth (cm) and hand grip strength (kg) in normal subjects	60
Table (4-16)	Correlation coefficient between wrist circumference (cm) and hand grip strength (kg) in normal subjects	61
Table (4-17)	Correlation coefficient between metacarpophalangeal joint circumference (cm) and hand grip strength (kg) in normal subjects	62
Table (4-18)	Correlation coefficient between forearm circumference (cm) and hand grip strength (kg) in normal subjects	63
Table (4-19)	Correlation coefficient between grip reach (cm) and hand grip strength (kg) in normal subjects	64
Table (4-20)	Correlation coefficient between elbow grip length (cm) and hand grip strength (kg) in normal subjects	65

Chapter I Introduction

Individuals use their hands and fingers every day at work and in the home. Knowledge of the force capabilities of the hand and fingers can facilitate the design of better tools and controls, and provide valuable data for comparison to current exertion levels of injured workers to determine the extent of an injury or the level of recovery (Astin, 1999). The assessment of physical dimensions of the human hand provides a metric description to ascertain human-machine compatibility in the design of manual systems. Primarily adapted for reaching, grasping and manipulating, the hand functions include activities, such as pushing, adjusting and manipulating objects. Furthermore the hand may be used as a fist or forces may be transmitted through the fingers extended in close packed positions. Prehensile movements of the hand have been described as cylinder, ball, ring, pliers and pincer grips and all such movements are the variants of precision and power grips (Nag et al., 2003).

Hand and finger force data are used in many settings, including industrial design and indicating progress during rehabilitation. The application of appropriate work design principles during the design of tools and workstations may minimize upper extremity injuries within the workplace. In addition, it is necessary to understand the capabilities of the hand and fingers in order to evaluate the level of disability caused by existing injuries and also to assess the progress made during recovery. Understanding the

physical capabilities and limitations of individuals is therefore necessary to optimize performance and minimize injury (Astin, 1999).

The dimensional and anatomical features of the human hand and the factors such as the size, shape, and texture of objects being held influence the functional aspects of hand uses. The occupational disorders associated with the improper use and cumulative exertion of the wrist and hand; include osteoarthritis, dislocations or subluxations, synovitis, ligament strains and ganglia, tenosynovitis, trigger finger, intrinsic muscle strains, and carpal tunnel syndrome. Generally these are referred to as repetitive or cumulative trauma disorders (CTD) since they occur in people performing repetitive handwork. Ergonomics consideration in the design of tools and appliances, in accordance with the dimensions of the human hand, may alleviate hand disorders in the user group (Nag et al., 2003).

Measurement of grip and pinch strength is an important component in hand evaluation. It assesses the patient's initial limitations and provides a quick reassessment of patient's progress throughout the treatment (Ertem et al., 2003). The integration of human strength capabilities and minimization of force requirements during the design phase of hand intensive tasks may reduce the risk of occupational injuries, including CTDs, and the costs associated with them (Astin, 1999).

Anthropometry is the measurement of the dimensions of the body and other physical characteristics. There are two types of