THE USE OF PLANT POLYSACCHARIDES IN SOME DAIRY PRODUCTS

By

LAILA KHALED HASSAN GOUDA

B.Sc. Agric. Sci. (Food Sci. and Tech.), Ain Shams University, 2001 M.Sc. Agric. Sci. (Food Sci. and Tech.), Ain Shams University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Dairy Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

2015

Approval Sheet

THE USE OF PLANT POLYSACCHARIDES IN SOME DAIRY PRODUCTS

LAILA KHALED HASSAN GOUDA

B.Sc. Agric. Sci. (Food Sci. and Tech.), Ain Shams University, 2001 M.Sc. Agric. Sci. (Food Sci. and Tech.), Ain Shams University, 2008

This thesis for Ph.D. degree has been approved by:

Dr. Abou Elsamh M. Mehriz Prof. Emeritus of Dairy Science and Technology, Faculty of Agriculture, Cairo University Dr. Saad El-Din M. Khalafallah Prof. Emeritus of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Mamdouh H. O. El-Kalyoubi Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Hamdy F. Haggag Prof. Emeritus of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University

THE USE OF PLANT POLYSACCHARIDES IN SOME DAIRY PRODUCTS

By

LAILA KHALED HASSAN GOUDA

B.Sc. Agric. Sci. (Food Sci. and Tech.), Ain Shams University, 2001 M. Sc. Agric. Sci. (Food Sci. and Tech.), Ain Shams University, 2008

Under the supervision of

Dr. Hamdy F. Haggag.

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, (Principal Supervisor)

Dr. Mamdouh H. O. El-Kalyoubi

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Magdy M. A. El-Sayed

Prof. Emeritus of Dairy Science and Technology, Department of Dairy Science, National Research Center, Cairo

ABSTRACT

Laila Khaled Hassan. "The Use of Plant Polysaccharides in Some Dairy Products". Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2015

The physical and hypolipidemic activity of ethanol precipitated cress seed mucilage (CSM) and flaxseed mucilage (FSM) solutions compared with commercial guar gum (GG) solution (1.0% w/w) were evaluated. All polysaccharides solutions exhibited shear-thinning behavior, which was more pronounced in GG solution. However, there was no significant difference in water holding capacity (WHC) of starch gel containing GG, FSM or CSM at the same concentration except at 0.4%. The GG solution had the highest clarity and foam stability. Both FSM and CSM solution had the best foaming capacity, while CSM had the lowest foam stability. The antioxidant capacity of the CSM solution was the highest, while that of GG solution was the lowest. In addition, treatment of hyperlipidemic rats with ATOR10[®], FSM or CSM induced a significant decrease in the serum triglycerides, total cholesterol, LDLcholesterol and hepatic MDA. Inversely, treatment of hyperlipidemic rats with ATOR10[®], FSM or CSM exhibited marked improvement in both serum HDL and hepatic total antioxidant capacity; CSM performed a stronger dislipidemic potential than that of FSM.

The changes in physicochemical properties of yoghurt containing CSM or FSM compared with yoghurt containing GG or plain set yoghurt during storage at 5±2°C for 15 days were studied. CSM and FSM were added to standardized buffalo's skim milk (~3.2% fat and ~15.0% TS) at rate of 0.025, 0.05 and 0.10% but GG was added at the rate of 0.025 and 0.05% to create 8 treatments, along with a batch had no CSM, FSM or GG which serve as a control (C). Addition of different levels from CSM, FSM or GG had no significant effect on pH value, proteolysis (WSN/TN ratio), and fermentation process of yoghurt samples throughout the storage period. Physically, addition of different levels from CSM or

0.025% GG reduced the yoghurt wheying—off and whey syneresis compared with C, while addition of FSM had no significant effect on whey syneresis. Apparent viscosity of yoghurt containing GG or CSM was higher than that of C until day 10. However, yoghurt containing 0.025 and 0.05% CSM or 0.05% GG showed continued increase in apparent viscosity until day 10 while for yoghurt containing 0.10% CSM, the increase was observed until day 5 and decline thereafter. Concerning to FSM, apparent viscosity of yoghurt containing 0.025% FSM was the highest compared with other yoghurt samples. Finally, addition of 0.025% GG, 0.05% CSM, or 0.05% FSM were sufficient to improve the physical and sensory properties of yoghurt compared with plain set yoghurt (control).

The CSM, FSM and GG were added separately at the rates of 0.025, 0.05 and 0.10% (w/w) to ice cream mixes consisted of 10.0% milk fat (fresh cream) 11.5% milk solids not fat (fresh buffalo's skim milk and skim milk powder) and 15.0% sucrose to create 9 treatments. Protein load was the highest in ice cream mix containing 0.025% GG or CSM, however, protein load decreased, as GG or CSM concentration increased. All ice cream mixes exhibited shear-thinning behavior, which increased by increasing the proportion of GG, CSM and FSM. Ice cream mix containing 0.1% FSM exhibited the highest viscosity followed by that containing 0.1% CSM or 0.05% GG. The overrun was the highest in the frozen ice cream containing 0.025% FSM or CSM, but it was the least in that containing 0.05% GG. The hardness of frozen ice cream decreased, as the concentration of GG, CSM or FSM increased. Finally, addition of 0.025% FSM, CSM or commercial GG was the best percentage to improve the physical and sensorial properties of resultant ice cream.

Keywords: Yoghurt, Ice cream, Flaxseed mucilage, Cress seed mucilage, Guar gum, Physicochemical properties, Hyperlipidemia.

ACKNOWLEDGMENT

First of all, cordial thanks to **ALLAH** who enabled me to overcome all the problems, which faced me through this work.

I would like to express my sincere gratitude to **Prof. Dr Hamdy F. Haggag,** Prof. of Dairy Sci. and Tech., Food Sci. Dept., Faculty of Agric., Ain-Shams University, for his kind supervision, advices, continuous valuable, fruitful criticism and encouragement throughout this piece of research work.

I am grateful and indebted to **Prof. Dr. Mamdouh, H. El-Kalyoubi,** Prof. of Food Sci. and Tech., Food Sci. Dept., Faculty of Agric., Ain-Shams University, for his kind supervision, suggestions and support of this work, motivation and continuous supply with continuous fruitful advices during this work.

I would like to express my sincere gratitude to **Prof. Dr. Magdy M. A. El-Sayed**, Prof. of Dairy Sci. and Tech., Dairy Sci. Dept., National Research Center, for his kind supervision, suggestion, valuable encouragement. Really, I was lucky because I had the chance of being one of his students.

I am grateful and indebted to **Prof. Dr. Ahmed F. Sayed,** Prof. of Dairy Sci. and Tech., Dairy Sci. Dept., National Research Center, for giving me the golden opportunity and great honor to work under his supervision. I would like to express my great thanks to him for his help guidance support and suggestions for solving the problems.

I would like to express my great thanks and indebtedness to **Prof. Dr. Mahmoud Abd EL-Aziz,** Prof. of Dairy Sci. and Tech., Dairy Sci.
Dept., National Research Center, for his planning of this study, kind

direct supervision; I really appreciate his valuable and enriching feedback. Thanks a lot for his effort in advising me through this thesis. I can't thank him enough for inspiring me to continue in the right direction. I really appreciate his advice, support and for being so generous with me.

Also, I would like to express my deep thank to **Dr. Khaled G. Abdel-Wahhab**, Assistant Prof. of Medical Physiology, Medical Division, National Research Center, for carrying out the part of the biological study in this thesis.

Great Thanks for all staff members, colleagues and secretary of Dairy Science Department, National Research Center for continuous help and encouragement through the work. Special thanks go to **Prof. Dr. Fayza Assem** and **Dr. Sahar Hassan.**

I would like to express my deep thanks to **my parents, husband** and **lovely sons** for their patience, understanding and moral support to give me the chances to complete this work.

CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Hydrocolloids	3
2.1.1. Types of hydrocolloids	3
2.1.2. Hydrocolloid functions	4
2.2. Polysaccharides	5
2.2.1. Classification of polysaccharides	5
2.3. Gums and mucilages	6
2.3.1. Mucilage extraction	8
2.3.2. Advantages of natural gums and mucilages	9
2.3.3. Disadvantages of natural gums and mucilages	10
2.3.4. Some types of gums and mucilages	11
2.3.4.1. Guar gum	11
2.3.4.1.1. Guar gum composition	11
2.3.4.1.2. Properties of guar gum	12
2.3.4.2. Mucilages	13
2.3.4.2.1. Flaxseed mucilage (FSM)	13
2.3.4.2.1.1. Flaxseed mucilage composition	14
2.3.4.2.1.2. Properties of flaxseed mucilage	16
2.3.4.2.1.3. The health effect of flaxseed mucilage	17
2.3.4.2.2. Cress seed mucilage (CSM)	17
2.3.4.2.2.1. Cress seed mucilage composition	18
2.3.4.2.2.2. Properties of cress seed mucilage	18
2.3.4.2.2.3. The health effect of cress seed mucilage	20
2.4. Applications of gums and mucilages	21
2.4.1. Yoghurt	22
2.4.2. Ice cream	25

3. MATERIALS AND METHODS	28
3.1. Materials	28
3.2. Technological treatments	28
3.2.1. Flaxseed or cress seed mucilages extraction	28
3.2.2. Solution preparation	29
3.2.3. Starter activation	29
3.2.4. Yoghurt making	29
3.2.5. Ice cream making	30
3.3. Methods	30
3.3.1. Physical properties of flaxseed mucilage, cress seed	
mucilage and guar gum	30
3.3.1.1. Mucilage yield	30
3.3.1.2. pH value	31
3.3.1.3. Clarity	31
3.3.1.4. Color measurements	31
3.3.1.5. Foaming properties	31
3.3.1.6. Spontaneous syneresis and water holding capacity	32
3.3.1.7. Apparent viscosity	32
3.3.1.8. Antioxidant capacity	32
3.3.2. Properties of yoghurt containing flaxseed mucilage,	
cress seed mucilage or commercial guar gum	33
3.3.2.1. Measurement of proteolysis	33
3.3.2.2. Acetaldehyde and diacetyl concentrations	33
3.3.2.3. Whey separation	33
3.3.2.3.1. Wheying-off	34
3.3.2.3.2. Whey syneresis	34
3.3.2.4. Apparent viscosity	34
3.3.2.5. Texture measurements	34
3.3.2.6. Sensory properties evaluation	35
3.3.3. Physical properties of ice cream containing flaxseed	
mucilage, cress seed mucilage or commercial guar	
gum	35

3.3.3.1. Acidity content	35
3.3.3.2. Surface tension	35
3.3.3. Apparent viscosity	36
3.3.3.4. Protein load	36
3.3.3.5. Whipping ability	36
3.3.3.6. Melting resistance	36
3.3.3.7. Hardness	37
3.3.3.8. Sensory properties evaluation	37
3.3.4. Bacteriological analysis	37
3.3.5. Hypolipidemic activity of flasseed mucilage and	
cress seed mucilage on rat fed a high-fat diet	38
3.3.5.1. Animals	38
3.3.5.2. Experimental design.	38
3.3.5.3. Liver tissue sampling and homogenization	39
3.3.5.4. Determination of blood glucose level	40
3.3.5.5. Determination of total cholesterol level	40
3.3.5.6. Determination of triglycerides (TGs) level	41
3.3.5.7. Determination of LDL-c level	42
3.3.5.8. Determination of HDL-c level	42
3.3.5.9. Determination of aminotransferases (AST & ALT)	
activities	43
3.3.5.10. Determination of serum urea level	44
3.3.5.11. Determination of serum creatinine level	44
3.3.5.12. Determination of liver lipid peroxidation end	
product, malondialdehyde (MDA)	45
3.3.5.13. Determination of liver total antioxidant capacity	
(TAC)	46
3.3.5.14. Percentage of change A	47
3.3.5.15. Percentage of change B	47
3.3.6. Statistical analysis	47
4. RESULTS AND DISCUSSION	48
4.1. Physicochemical properties and hypolipidaemic activity	48

of polysaccharides solutions
4.1.1. Physicochemical properties of ethanol precipitate
flaxseeds and cress seeds mucilages compared with
commercial guar gum
4.1.1.1. Mucilage yield and composition
4.1.1.2. pH, clarity and color of polysaccharides solutions
4.1.1.3. Foaming capacity and stability
4.1.1.4. Spontaneous syneresis
4.1.1.5. Water holding capacity
4.1.1.6. Apparent viscosity
4.1.1.7. Antioxidant capacity
4.1.2. Hypolipidemic activity of ethanol precipitate
flaxseed and cress seed mucilages on rat fed a high
fat diet
4.1.2.1. Serum glucose level
4.1.2.2. Serum lipid profile
4.1.2.3. Serum aminotransferases (AST and ALT) activities.
4.1.2.4. Serum urea and creatinine levels
4.1.2.5. Liver lipid peroxidation end product, malondialde
hyde (MDA) and total antioxidant capacity
4.2. Physicochemical, microbiological and sensor
properties of set yoghurt containing ethano
precipitated flaxseeds and cress seeds mucilages o
commercial guar gum
4.2.1. pH values
4.2.2. Water soluble nitrogen
4.2.3. Flavor compounds
4.2.4. Microbiological properties
4.2.5. Whey separation
4.2.6. Yoghurt firmness
4.2.7. Apparent viscosity
4.2.8 Sensory evaluation

4.3. Physical and sensory properties of ice cream containing	
ethanol precipitated flaxseeds and cress seeds	
mucilages or commercial guar gum	93
4.3.1. Properties of ice cream mixes	93
4.3.1.1. pH, acidity and surface tension	93
4.3.1.2. Protein load	93
4.3.1.3. Mix viscosity	96
4.3.1.4. Whipping ability	98
4.3.2. Frozen ice cream	100
4.3.2.1. Overrun percentage	100
4.3.2.2. Hardness of ice cream	101
4.3.2.3. Meltdown of frozen ice cream	103
4.3.2.4. Sensory properties of frozen ice cream	104
5. SUMMARY AND CONCLUSION	107
6. REFERENCES	114
7. ARABIC SUMMARY	

LIST OF TABLES

No	TITLE	Page
1	Yield and composition of dried ethanol precipitated	
	flaxseed and cress seed mucilage	49
2	pH and clarity of flaxseed mucilage, cress seed mucilage	
	and guar gum solutions	50
3	Colors of flaxseed mucilage, cress seed mucilage and	
	guar gum solutions (1.0% w/w)	51
4	Foaming capacity and stability of flaxseed mucilage,	
	cress seed mucilage and guar gum solutions (1.0%	
	w/w)	52
5	Effect of polysaccharide types and concentrations on the	
	spontaneous syneresis of starch solution during storage at	
	5±2°C for 15 days	53
6	Effect of polysaccharide types and concentrations on the	
	water holding capacity of starch solution	55
7	Viscosity of flaxseed mucilage, cress seed mucilage and	
	guar gum solutions (1.0% w/w)	57
8	Level of serum fasting blood glucose and the percentage	
	of change of male albino rats fed high-fat diet, fed high-	
	fat diet and treated either with ATOR10 [®] , FSM or CSM	
	as compared to normal ones	60
9	Levels of serum total cholesterol, triglycerides and the	
	percentage of change of male albino rats fed high-fat diet,	
	fed high-fat diet and treated either with ATOR10 [®] , FSM	
	or CSM as compared to normal ones	62
10	Levels of serum LDL cholesterol and HDL cholesterol	
	and the percentage of change of male albino rats fed high-	
	fat diet, fed high-fat diet and treated either with	
	ATOR10 [®] , FSM or CSM as compared to normal ones	64
11	Activities of serum liver aminotransferase enzymes (ALT	

	and AST) and the percentage of change of male albino	
	rats fed high-fat diet, fed high-fat diet and treated either	
	with ATOR10 [®] , FSM or CSM as compared to normal	
	ones	68
12	Levels of serum urea, creatinine and the percentage of	
	change of male albino rats fed high-fat diet, fed high-fat	
	diet and treated either with ATOR10 [®] , FSM or CSM as	
	compared to normal ones	70
13	Level of hepatic lipid peroxidation (MDA), total	70
10	antioxidant capacity (TAC) and the percentage of change	
	of male albino rats fed high-fat diet, fed high-fat diet and	
	treated either with ATOR10 [®] , FSM or CSM as compared	
	to normal ones	73
14	Changes in pH of plain set yoghurt and yoghurt	75
17	containing guar gum, flaxseed mucilage or cress seed	
	mucilage during storage period at 5±2°C for 15 days	76
15		70
15	Changes in water soluble nitrogen/total nitrogen ratio of	
	plain set yoghurt and yoghurt containing guar gum,	
	flaxseed mucilage or cress seed mucilage during storage period at 5±2°C for 15 days	78
16	·	70
10	Changes in acetaldehyde and diacetyl contents of plain set	
	yoghurt and yoghurt containing guar gum, flaxseed	
	mucilage or cress seed mucilage during storage period at 5±2°C for 15 days	80
17	•	00
1/	Changes in counts of <i>Lb. bulgaricus</i> , <i>Str. thermophilus</i> and <i>Lb. acidophilus</i> (log_{10} cfu/g) of plain set yoghurt and	
	yoghurt containing guar gum, flaxseed mucilage or cress	
	seed mucilage during storage period at 5±2°C for 15	
		82
18	Changes in whey congration of plain set yearburt and	04
10	Changes in whey separation of plain set yoghurt and	
	yoghurt containing guar gum, flaxseed mucilage or cress	
	seed mucilage during storage period at 5±2°C for 15	

	day	85
19	Changes in firmness of plain set yoghurt and yoghurt	
	containing guar gum, flaxseed mucilage or cress seed	
	mucilage during storage period at 5±2°C for 15 days	87
20	Sensory properties (9 point hedonic scale) of plain set	
	yoghurt and yoghurt containing guar gum, flaxseed	
	mucilage or cress seed mucilage during storage period at	
	5±2°C for 15 days	92
21	Some physical properties of ice cream mixes containing	
	guar gum, flaxseed mucilage or cress seed mucilage	95
22	Whipping ability of ice cream mixes containing guar	
	gum, flaxseed mucilage or cress seed mucilage	99
23	Some physical properties of ice cream containing guar	
	gum, flaxseed mucilage or cress seed mucilage	102
24	Meltdown of frozen ice cream containing guar gum,	
	flaxseed mucilage or cress seed mucilage	105
25	Sensory properties of frozen ice cream containing guar	
	gum, flaxseed mucilage or cress seed mucilage	106