Post extubation nasal intermittent positive pressure ventilation vs nasa continuous positive air way pressur in respiratory distress syndrome

Thesis submitted for the Partial Fulfillment of Master Degree i

Pediatrics

Presented By
John Victor Farid

M.B, B.Ch.2009, Ain Shams University

Under Supervision of

Professor Dr. Eman Amin Abd El-Aziz

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Doctor/Rania Ali El-Farrash

Assistant Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Doctor/ Mohammed Saad Eldin Eladaw

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2015

Acknowledgment

First thanks to **God** to whom I relate any suachieving any work in my life.

I wish to express my deepest thanks, gratitu appreciation to **Prof. Dr. Eman Amin Abd El-Aziz**, Prof Pediatrics Faculty of Medicine - Ain Shams University kind guidance, valuable instructions and generous help.

I am deeply indebted to Assist. Prof. Rania Ali El-S. Assistant Professor of Pediatrics Faculty of Medicine - Air University for her meticulous supervision, outstanding active participation and guidance.

I am thankful to **Dr. Mohammed Saad Eldin E** lecturer of Pediatrics, Faculty of Medicine - Ain Shams U₁ for his valuable comments, suggestions, supervision, suppguidance.

Special thanks are due to Major General Dr. Mour Ramzy Tadros, Consultant of Pediatrics and Neonatola manager of Algalaa gynecology and children Military Hosphis sincere efforts, fruitful encouragement.

Special thanks to **Dr. Ashraf Abd El-Wahed**, Prof Pediatrics Faculty of Medicine - Ain Shams University Nayra Esmael, Professor of Pediatrics, institute of mot and childhood for accepting to participate in examination thesis.

Mr. Gergis Lotfy, my friend, advisor and statistician support, who shared his knowledge and helped in analysis c

List of contents

Title	Page No.
List of Abbreviations	
List of tables	
List of figures	
Introduction	
Aim of the study	
Literature of review	
Respiratory Distress Syndrome.	
Noninvasive ventilation	
Patients and Methods	
Results	
Discussion	11
Summary	1;
Conclusion	15
Recommendations	15
References	15
Arabic Summary	

List of Abbreviations

American Academy of Pediatrics
Arterial blood gas
ATP binding casette gene
-Antenatal Corticosteroids
acute respiratory distress syndrome
adenosine triphosphate
blood pressure
Bronchopulmonary dysplasia
breath per minute
Biphasic positive airway pressure
Celsius
chronic lung disease
Continuous positive airway pressure
Cesarean section
Delivery room
dipalmitoyl- phosphatidyl-choline
Elective Cesarean section
Extremely low birth weight
Endotracheal tube
Food and Drug Administration
Fraction of inspired Oxygen

Abb. Full term

FRC Functional residual capacity GA..... Gestational age g/dl..... gram per deciliter h..... Hour HFNC High-flow nasal cannula HFV..... High-frequency ventilation HHFNC Humidified high-flow nasal cannula HMD hyaline membrane disease IPPV Intermittent positive pressure ventilation IQR interquartile range Kg..... Kilogram I.M Intramuscular LMA..... laryngeal mask airway L-S..... lecithin-sphingomyelin mEq/L.... milliequivalent per liter mmHg..... millimeters of mercury mRNA messenger ribonucleic acid MV Mechanical ventilation n-BiPAP Nasal bilevel positive airway pressure n..... number NC nasal cannulae NCPAP...... Nasal continuous positive airway pressure

NEC..... necrotizing enterocolitis

A66.	Full term
NHFV	. nasal high-frequency ventilation
	Neonatal Intensive Care Unit
NIPPV	. Nasal intermittent positive-pressure ventilation
NIV	Noninvasive ventilation
NPCPAP	. nasopharyngeal CPAP
NRS	Noninvasive respiratory support
NPSIMV	nasopharyngeal synchronized intermittent
	mandatory ventilation
PaCO ₂	arterial carbon dioxide pressure
PaO ₂	. arterial oxygen pressure
PCO ₂	. carbon dioxide pressure
PDA	Patent ductus arteriosus
PEEP	. Positive end expiratory pressure
PIP	Peak inspiratory pressure
PROM	Prolonged Rupture of Membranes
PVL	Periventricular leucomalacia
RCTs	randomized, controlled trials
RD	. Respiratory distress
RDS	. Respiratory distress syndrome
ROP	Retinopathy of prematurity
PIE	pulmonary interstitial emphysema
SD	standard deviation
SIMV	Synchronous intermittent mandatory ventilat

——— iii —

A66. Full term

SiPAP sigh positive airway pressure

TV Tidal volume

TLC Total lung capacity

TRH..... thyrotropin-releasing hormone

VILIs ventilator induced lung injuries

VLBW Very low birth weight

Vs Versus

Wks. weeks

WOB Work of breathing

W.t..... Weight

List of tables

Table No.	Title	Page No
Table (1):	APGAR Scoring system	
Table (2):	Ballard scores	
Table (3):	Age and sex of the two study groups	
Table (4):	Antenatal and natal history of the two str	udy groups
Table (5):	Clinical examination of the two study gr	oups
Table (6):	Clinical examination of the two study gr	oups
Table (7):	Grades of respiratory distress of the	two study
	groups	
Table (8):	ABG on admission of the two study grou	ıps
Table (9):	CBC and CRP on admission of the	two study
	groups	
Table (10):	Outcomes in the two study groups	
Table (11):	ABG follow-up in the two study groups	
	Complications in the two study groups	
Table (13):	Association between mode of delivery as	nd
	outcomes	
Table (14):	Association between grades of respirator	y distress
	and outcomes	
Table (15):	Association between surfactant usage an	d
	outcomes	
Table (16):	Association between PH on admis	
	outcomes	
Table (17):	Association between pCO ₂ on admission	and
	outcomes	
Table (18):	Correlation between gestational age and	•
	admission and outcomes	

List of figures

Figure No.	Litle	Page No.
Figure (1): Pressure	e-volume curves	
Figure (2): Microsco	opic appearance of lungs	s of an infant with
RDS		
Figure (3): White L	ung	
Figure (4): White L	ung	
Figure (5): Lung str	ructure	
Figure (6): Diffusion	n of gases across the alve	eolar–capillary
membra	ane	
Figure (7): CPAP A	pparatus	
Figure (8): An exam	nple of nasopharyngeal p	orongs
Figure (9): An exam	nple of nasal prong	
Figure (10): An exa	mple of nasal mask	
Figure (11): Nasal is	njuries from NCPAP	
Figure (12): An exa	mple of Nasal Cannula	
Figure (13): Neotec	h RAM Cannula	
Figure (14): Gender	distribution in study gro	oups
Figure (15): Distrib	ution of the gestational a	ge in the study
Figure (16): Distrib	ution of the mode of deli	very in the study
Figure (17): Distrib	ution of the weight in the	e study
Figure (18): Distrib	ution of the total days of	ventilation in the
study		

Title page No. Figure No. Figure (19): Distribution of days of non-invasive ventilation in the study..... Figure (20): Distribution of successful extubation in the study... Figure (21): Post extubation pH assessment in the study.........1 Figure (22): Post extubation pCO₂ assessment in the study.....1 Figure (23): Weight gain distribution in the study......1 Figure (26): Association between Mode of delivery and days of IMV1 Figure (27): Association between Mode of delivery and duration of NIV......1 Figure (28): Association between Mode of delivery and weight gain1 Figure (29): Association between grades of respiratory distress and duration of NIV1 Figure (30): Association between grades of respiratory distress and weight gain1 **Figure (31):** Association between grades of respiratory distress and duration of hospital stay1 Figure (32): Association between surfactant usage and duration of IMV1

vii

page No. Figure No. Figure (33): Association between surfactant usage and duration of NIV......1 Figure (34): Association between surfactant usage and weight Figure (35): Association between PH on admission and days of IMV......1 Figure (36): Association between PH on admission and duration of NIV......1 Figure (37): Association between PH on admission and weight gain1 Figure (38): Association between pCO₂ on admission and days of IMV1 Figure (39): Association between pCO₂ on admission and weight gain.....1 Figure (40): Association between pCO₂ on admission and hospital stay1 Figure (41): Correlation between weight on admission and weight gain.....1 Figure (42): Correlation between weight on admission and hospital stay1 Figure (43): Correlation between gestational stage and hospital days......1

viii —

Title

Introduction

espiratory distress syndrome (RDS) formerly known as hyali membrane disease, is the major cause of neonatal respirate distress. RDS is a result of surfactant deficiency, which caus increased surface tension in the air-liquid interface of the termin respiratory units leading to atelectasis, increased ventilati perfusion mismatch, and potential lung injury due to a mark pulmonary inflammatory response. RDS is the most comm cause of respiratory distress in preterm infants because lu immaturity is associated with inadequate production of pulmona surfactant (*Martin*, 2015).

RDS occurs primarily in premature infants; its incider is inversely related to gestational age and birth weight. It occurs 60-80% of infants less than 28 weeks of gestational age, in 1 30% of those between 32 and 36 weeks, in about 5% beyond weeks (*Dudell & Stoll 2012*).

In previous decades, it was common to initial endotracheal intubation and mechanical ventilation in neonal with moderate or severe respiratory distress. However, it is not known that such actions may have adverse effects on 1 respiratory system (*Ramanatha & Sadesai 2008*).

The overall concepts of ventilator induced lung injur (VILIs) are: Volu/barotrauma, injury related to lung ov distension; atelectrauma, injury caused by alveolar collap

biotrauma, injury caused by hyperactive inflammatory responsecondary to bacterial airway colonization; and endotraun injury to the airway (*Mahmoud et al.*, 2011).

Improvements in the measurement of volume and flow modern neonatal ventilators have led to a variety of alternati non-invasive ventilation (NIV) procedures. NIV refers to a technique that uses constant or variable pressure to provi ventilatory support, but without tracheal intubation. Non-invasi respiratory support has been demonstrated to be less injurious the premature lung (*Thomson et al.*, 2004).

One of NIV is nasal continuous positive airway pressi (NCPAP) which was first described by *Gregory et al.*, (1971): the treatment of newborns with respiratory distress. Gregor first description has paved the way for the use of CPAP as 1 primary treatment for preterm infants with respiratory distre Since that time, many prospective studies have shown improved survival of premature infants treated with early CP_L (Morley et al., 2008); (Roehr et al., 2011).

Nasal intermittent positive pressure ventilation (NIPP is a noninvasive mode of ventilation that offers more ventilate support than NCPAP. NIPPV may be synchronized (SNIPPV) non-synchronized to the infant's breathing efforts. Thorac abdominal motion asynchrony and flow resistance through to nasal prongs decrease in neonates on SNIPPV, with improve

Introduction

stability of the chest wall and pulmonary mechanics (*Kiciman al.*, 1998).

Moreover, delivering the peak inspiratory with little or deviation through the esophagus into the stomach, obtaining t double advantage of increasing tidal volume (Vt) and reducing t risk of gastrointestinal side effects. In doing so, it is also possil that NIPPV recruits collapsed alveoli and increases function residual capacity (*Kiciman et al.*, 1998).

Aim of the study

 ${\mathcal T}$

he aim of this work is to compare the effect of nasal continuc positive airway pressure (NCPAP) and nasal intermittent positive pressure ventilation (NIPPV) on preterm neonates we respiratory distress syndrome (RDS) in post-extubation period.