Cairo University Faculty of Veterinary Medicine Microbiology Department

Studies on the efficacy of lactobacilli on the immune status and performance of broiler chickens

A Dissertation presented by
Kamal Hossein Ab El-Tawab Zidan
Submitted In Partial Fulfilment For the Degree of Ph. D.
In Microbiology

(Bacteriology- Immunology and Mycology)

Under the supervision of

Prof. Dr.: Khald Farouk Mohamed Al Amry

Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr.: Iman Bakr Mohamed Khedr

Professor of Pathology and Vice
Dean of Postgraduate
and Researches
Faculty of Veterinary Medicine
Cairo University

Prof. Dr.: Mahmoud Essam Hatem Ahmed

Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr.: Ausama Abd El-Raouf Abd El-Moneim Yousif

Professor and Head of Virology
Department
Faculty of Veterinary Medicine
Cairo University

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Approval Sheet

This is to certify that the dissertation submitted by Vet.\ Kamal Hossein Abdel-Tawab Zidan, for the Ph.D. degree of Veterinary Medical Sciences, Microbiology (Bacteriology, Immunology and Mycology) has been approved by the examining committee.

• Professor Dr.\ Fawzy Reyad Mahammed El-Saedy F. D. & Saedy
Professor of Microbiology
Faculty of Veterinary Medicine
Beni-Suef University

 Professor Dr.\ Jakeen Kamal Abd Alhaleem El- Jakee Professor of Microbiology

Faculty of Veterinary Medicine Cairo University

• Professor Dr.\ Khaled Farouk Mohamed Al-Amry

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Professor Dr.\ Iman Bakr Mohamed Khedr
 Professor of Pathology and Vice Dean of Postgraduate and Researches Faculty of Veterinary Medicine
 Cairo University

· Professor Dr.\ Ausama Abd El-Raouf Abd El-Moneim Yousif

Professor and Head of Virology Department Faculty of Veterinary Medicine Cairo University

Dated: 16/1/2016

Supervision Sheet

Professor Dr.: Khald Farouk Mohamed Al Amry

Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Professor Dr.: Mahmoud Essam Hatem Ahmed

Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Professor Dr.: Iman Bakr Mohamed Khadr

Professor of Pathology and Vice Dean of Postgraduate and Researches Faculty of Veterinary Medicine Cairo University

Professor Dr.: Ausama Abd El-Raouf Abd El-Moneim Yousif

Professor and Head of Virology Department Faculty of Veterinary Medicine Cairo University Name: Kamal Hossein Abdel-Tawab Zidan

Date of birth: 20- 4- 1974 Nationality: Egyptian

Degree: Philosophy of Doctor in Veterinary Microbiology

Specification: Microbiology.

Title of research: Studies on the efficacy of lactobacilli on the immune status and performance of broiler chickens.

Abstract

This research was initiated with the objective of producing a local probiotic formulation and application programs to further improve broiler production economics and safety. Four isolates of lactobacilli were recovered and characterized biochemically, and genetically, based on the rRNA gene from the gut of mature healthy broilers. L. johnsonii, L. plantarum, L. crispatus and L. reuteri were selected and mixed with an equal volume and approximate dose of 10⁸ CFU/chick was tested. The safety of oral administration of the characterized lactobacilli was established in broilers. An innovative media from chicken feed for propagation of lactic acid producing bacteria was devised to reduce the cost of local commercial production of probiotics. A probiotic application protocol was suggested. Single and two-time probiotic applications (at 0 day or at 0 and 10 days) were tested in groups of broiler chicks reared under field conditions and fed antimicrobials- and anticoccidial- free rations. The modified whey broth surpasses MRS and feed extract media. Performance parameters and antibody immune responses were measured with, and without microbial challenge in two experiments. Clostridium perfringens type A was used in challenging bird (109 CFU/chick). Higher performance parameters, reduced disease impact and improved histopathological picture of intestine were reported in groups receiving probiotic. Non significant changes in antibody responses were observed. Data analysis shows that an overall 8% increase in broiler production can be achieved using the double dose application approach of the probiotics. A significant ($P \le 0.05$) risk reduction of C. perfringens challenge can be achieved using either one or double dose application approach of the probiotics and conclusions pertaining the use and possible production economics were drawn.

Keywords: Chicken, Clostridium, Histopathology, Lactobacillus, Poultry, Probiotic.

Dedication

To my mother, my father,

brothers, sisters,

wife and lovely babies

Acknowledgment

All thanks at first and at the end to our merciful God **ALLAH** who gift me all things unconditionally and prayer and peace upon **prophet Mohamed** who taught people all good.

Thanks to all who taught me from the beginning of my life, I feel that their teaching get me human.

In particular, I wish to express my sincere gratitude to my principal supervisor, **Professor Dr.**Mahmoud Esam Hatem Ahmed, Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for his patience, motivation, and immense knowledge. His guidance helped me during the whole process of research and writing of this thesis. Thank you Dr. Hatem for giving me the opportunity to work comparatively independently. Thank you for sharing your time and thoughts with me during these years. I seldom faced obstacles but, instead, I was receiving complete respect, help and support just when I said I'm a student of **Dr. Hatem**, who did not only provide me with scientific data but he taught me the meaning of life. He exceeded the Arabic Hatem in terms of generosity with all people. My prayers will be his forever. I could not have imagined that I would have had a better advisor and mentor for my Ph.D study than him.

Sincere thanks go also to my other supervisor, **Professor Dr.Khaled Farouk Mohamed Al Amry**, Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University. I would like to express my sincere gratitude to him for his continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Thanks for his endless donation and infinite support that allowed me to finish my work smoothly and effectively.

Sincere thanks to **Professor Dr. Ausama Abd El-Raouf Abd El-Moneim**, Professor and chairman of Virology department, Faculty of Veterinary Medicine, Cairo University for his indefinite scientific and affectional support and effort with me to complete my study, stimulating discussions, for the sleepless nights we were working together before deadlines. Really he helped me to learn and think so differently that I decided to combine theoretical study with practical application. My relationship with my Prof. started in 1994 and since then he advised and supplied me with honest and valuable recommendations. I am grateful to him for guiding me in the initial stage of my research. It is not the end but it is a start for another journey my professor, I hope that.

I'm extremely grateful to **Professor Dr. Iman Shaheed Mohamed Baky**, professor of pathology, Faculty of Veterinary Medicine, Cairo University for her valuable advice and supervision. Thanks for her insightful comments, encouragement, and her challenging questions, which incited me to broaden the scope of my research.

I owe my thanks to the official referees in the primary qualification, **Prof. Dr. Mohamed Kamal Refai**, **Prof. Dr. Wagih ArmaniousGad** and **Prof. Dr. Saad Ahmed Ateia**, Professors of Microbiology, Faculty of Veterinary Medicine, Cairo University. Thank you for your constructive criticisms.

I wish to thank **Prof. Dr. Ramadan A. El-Banna**, Professor and Chairman of Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Cairo University; **Dr. Mahmoud M. Fayez**, Anaerobic Department, Veterinary Serum and Vaccine Research Institute, Cairo, Egypt for their generous help and support.

I would like to thank my mother and father, who gave me life and supported me with their prayers and love. Thanks to my brothers and sisters for their love and support.

Finally, I wish to thank our children, **Mostafa, Hossein, Salma and Einas**, for bringing me the joy, and giving me a perspective of life in general. To **my wife**, a special thank you for our love that we both so much enjoy. Thank you for your unconditional love and support during our years together.

List of Contents

Lis	t of	Table	es	VII
Lis	t of]	Figur	es	IX
Lis	t of .	Abbr	eviations	XI
1	Int	trodu	ction	1
2	Re	view	of Literatures	5
2	2.1	Def	finition of probiotics	5
2	2.2	Res	sident bacteria of chicken GIT	6
2	2.3	Me	chanisms of bacterial probiotic action	15
2	2.4	Eff	ects of probiotics	22
2	2.5	Pro	biotic clinical application methods	30
3	Ma	ateria	lls and Methods	33
3	3.1	Ma	terials	33
	3.1	1.1	Media	33
	3.1	1.2	Chemicals	35
	3.1.3		Materials for bacterial identification	36
		1.4 ethod	Materials for antibacterial sensitivity (Disk diffusion)	38
	3.1	1.5	Birds	39
	3.1	1.6	Vaccines	40
	3.1	1.7	Clostridium perfringens (challenge isolate)	40
	3.1	1.8	Guinea pigs	40
	3.1	1.9	Materials for bacterial counting	41
		l.10 LISA	Material for Enzyme Linked Immunosorbent Assay	42
		1.11	Materials for histopathology	
		1.12	Instruments and laboratory supplies	

	3.2 N	Methods	46
	3.2.1	Media preparation	46
	3.2.2	Calcium chloride solution	49
	3.2.3	Phosphate buffered saline	49
	3.2.4	Bacterial isolation	50
	3.2.5	Gram staining	50
	3.2.6	Biochemical identification	50
	3.2.7	Molecular characterization of bacterial isolates	51
	3.2.8	B Disk diffusion antibacterial sensitivity (Kirby–Bauer)	56
	3.2.9	Preservation of bacterial isolates	56
	3.2.1	0 Aggregation ability of lactobacilli (autoaggregation)	57
	3.2.1	1 Feed extract optimization for Lactobacillus growth	58
	3.2.1	2 Bacterial growth within different broth medium	59
	3.2.1	3 Clostridium perfringens type A characterization	60
	3.2.1	4 Clostridium perfringens pathogenicity testing	60
	3.2.1	5 Bio-X Enterotoxaemia ELISA kit (Bio K 270)	60
	3.2.1	6 Clinical application of selected lactobacilli	61
	3.2.1	7 Clinical trials testing	65
	3.2.1 detec	8 Determination of genomic DNA recovery, real time PCI ction sensitivity, and real time PCR detection range	
4	Resu	ılts	75
	4.1 F	Results of morphological identification of lactobacilli	75
	4.1.1	Growth onto MRS agar medium	75
	4.2 F	Results of biochemical testing	77
	4.2.1	Catalase test	77
	4.2.2	API 50 CH carbohydrate fermentation test	77
	4.3 F	Results of molecular identification	80

4.3.1 Polymerase chain reaction80
4.3.2 Results of rRNA gene sequencing81
4.3.3 Sequence analysis:
4.3.4 Results of sequence submission to GenBank85
4.4 Results of bacterial aggregation87
4.5 Results of feed extract medium optimization87
4.6 Results of bacterial growth within different media88
4.6.1 Media economics90
4.7 Results of antibacterial resistogram of <i>Lactobacillus</i> strains91
4.8 Results of safety testing (Chick's tolerance to different doses).94
4.9 Results of the first clinical trial94
4.9.1 Results of the chicken growth performance parameters94
4.9.2 Results of LAB and coliform bacteria count (first trial)95
4.9.3 Results of ELISA testing against vaccinations95
4.9.4 Histopathological examination97
4.10 Results of the second clinical trial (<i>C. perfringens</i> challenge)
4.10.1 Results of clinical observation and post mortem examination
4.10.2 Results of weekly mean body weight111
4.11 Quantitative real time PCR optimization
4.11.1 Determination of genomic DNA recovery, real time PCR detection sensitivity, and real time PCR detection range
4.11.2 Determination of detection sensitivity and detection range of the real-time PCR used for quantification of <i>Clostridium</i> perfringens from intestinal contents
4.11.3 Results of intestinal bacterial count (non challenged birds)

4.11.4 Bacterial count results of <i>C. perfringens</i> challe		nged birds	
	(quantification by real time qPCR)	121	
	4.11.5 Histopathological examination (post challenge).	124	
5	Discussion	128	
6	Summary	152	
7	References	155	
٨	الملخص العربي		

List of Tables

Table (1). Primers used for bacterial rDNA amplification	37
Table (2). Primers for Lactobacillus quantification	42
Table (3). Feed extract medium	48
Table (4). PCR conditions of bacterial 16S rDNA	53
Table (5). rDNA sequences used in the phylogenetic tree construction .	55
Table (6). Vaccination program of the broiler chicks	63
Table (7). First trial sampling schedule from each group	64
Table (8). Total Lactobacillus species real time qPCR conditions	71
Table (9). C. perfringens real time qPCR conditions	72
Table (10). Results of API 50 sugar fermentation of lactobacilli	78
Table (11). The API 50 identification test results	80
Table (12). rRNA gene partial nucleotide sequences of lactobacilli	82
Table (13). Biotyping vs. genotyping of lactobacilli	84
Table (14). The OD600 and aggregation index of lactobacilli	87
Table (15). Growth rates of lactobacilli in feed extract	88
Table (16). L. johnsonii growth percentage in different media	89
Table (17). L. plantarum growth percentage in different media	89
Table (18). L. reuteri growth percentage in different media	90
Table (19). L. crispatus growth percentage in different media	90
Table (20). Price comparison between the media under testing	91
Table (21). Antibacterial susceptibility of Lactobacillus strains	93
Table (22). Weekly body weight of the first trial (Mean \pm SD)	94
Table (23). Cumulative feed conversion rate (CFC)	95
Table (24). Total lactic acid bacteria and coliform count (first trial)	95
Table (25). Results of ELISA titers against NDV	96
Table (26). The results of ELISA titers against IBDV	96
Table (27). Mean body weight pre and post challenge	111
Table (28). Total lactobacilli quantification by SYBR Green I (Equival	ent
Log ₁₀ copy number/g intestinal content).	119
Table (29). Total lactobacilli quantification by SYBR Green I (Ct	
values±SD).	119
Table (30). Lactic acid bacteria count Log ₁₀ CFU/gram intestinal conte	nt
	121

Table (31). Coliform count Log ₁₀ CFU/gram intestinal content	121
Table (32). Results of <i>C. perfringens</i> quantification post-challenge	122
Table (33). Total lactobacilli and <i>C. perfringens</i> quantification post-	
challenge	122

List of Figures

Fig. (1). Lactobacillus isolates morphology (Gram staining)
Fig. (2). Electrophoresis of the rRNA gene amplicons of lactobacilli81
Fig. (3). Molecular phylogenetic analysis by maximum likelihood method
86
Fig. (4). Jejunum of control group at 11 th day (first trial)98
Fig. (5). Jejunum of control group at 16^{th} day (first trial)100
Fig. (6). Jejunum of T1 at 16 th day (first trial)101
Fig. (7). Small intestine of T2 at 16 th day (first trial)
Fig. (8). Crop of T2 at 16 th day (first trial) with rod shaped bacilli103
Fig. (9). Small intestine of T2 at 16 th days (first trial)104
Fig. (10). Small intestine of control group at 35 th day (first trial)106
Fig. (11). Jejunum of control group at 35 th day (fist trial)107
Fig. (12). Jejunum of T2 at 35 th day (first trial)108
Fig. (13). Intestine of Cc group post-challenge (second trial)109
Fig. (14). Intestine of T1c group post-challenge (second trial)110
Fig. (15). Intestine of T2c group post-challenge (second trial)110
Fig. (16). Standard curve <i>Lactobacillus</i> spp. quantification by real time
PCR based on tenfold serial dilution of DNA
Fig. (17). Standard curve of <i>Lactobacillus</i> spp. quantification by real time
PCR based on extracted DNA from tenfold serial dilution of bacterial
suspension
Fig. (18). L. plantarum standard curves optimization115
Fig. (19). Standard curve of <i>C. perfringens</i> quantification by real time
qPCR based on tenfold serial dilution of stock DNA116
Fig. (20). Standard curve of <i>C. perfringens</i> quantification by real time
qPCR based on extracted DNA from tenfold serial dilution of bacterial
suspension
Fig. (21). C. perfringens standard curves optimization118
Fig. (22). Amplification curve of <i>Lactobacillus</i> spp. quantification by real
time qPCR120
Fig. (23). Melting curve analysis of <i>Lactobacillus</i> spp. quantification by
real time qPCR
Fig. (24). Amplification curve of <i>C. perfringens</i> by real time qPCR123

Fig. (25). Jejunum of control challenged group at 21 st day	125
Fig. (26). Small intestine of T1c at 21 st day	126
Fig. (27). Small intestine of T2c at 21 day old	127