

شبكة المعلومات الجامعية



Service Servic





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

## جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

## قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-١٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%



بعض الوثائق

الاصلية تالفة



بالرسالة صفحات لم

ترد بالاصل



## Suez Canal University

Faculty of Petroleum and Mining Engineering Department of Metallurgical and Material Engineering

### "MECHANICAL ALLOYING TO PRODUCE SOME Fe- CONTAINING ALLOYS"

A Thesis Submitted In Partial Fulfillment of the Requirements , ی بسی بات مشر STER این می بات می بات

For the Degree of MASTER

Saleh Hemedah Mohamed

**B.SC.** (Metallurgical Engineering)

Under The Supervision of

Prof. Dr. Mahmoud Ibrahim Abbas

Prof. Dr. Sayed Farag Moustafa

Dr. Magdy Abd-Elwahab Kassem

To The

Faculty of Petroleum and Mining Engineering

Suez Canal University

2001



#### **ACKNOWLEDGEMENT**

I am deeply grateful to Prof. Dr. Adel A. Nofal, the president of Center Metallurgical R&D Institute (CMRDI), and Prof. Dr. Samir Ibrahim, Head of the Materials Science and Metallurgy Department, Faculty of petroleum and Mining Engineering, Suez Canal University for their continuous help and facilities provided.

Indebted thanks are to Prof. Dr. Mahmoud Abbas, Faculty of Petroleum and Mining Engineering, Suez Canal University; Prof. Dr. Sayed Farag Moustafa (CMRDI), and Dr. Magdy Abd-Elwahab Kassem for their supervision, encouragement, valuable suggestions and guidance through the course of the present thesis.

Grateful acknowledgments are due to Prof. Dr. Sabah Nasif and Dr. I. S. Ismail (CMRDI) for their great help or the preliminary X-Ray analysis of this work.

Invaluable help has been also provided by the staff of metallorgraphy laboratory, (CMRDI).

I wish also to express my grateful thanks to Mr. Walid Rashed, Mrs. Omayma, Mr. Nasr Khattab, Eng. Abdel-Karim Yousif and Mr. Saad Awaad, the staff of Powder Metallurgy Department, for their great help during the course of this research work.

I would like to express my deep thanks to my parents and my wife for their continual support and encouragement.

#### **ABSTRACT**

Mechanical alloying is a solid – state process for producing nonmaterial either metallic or ceramic powders to form solid solutions, intermetallics and amorphous alloys as well.

Fe<sub>X</sub>-Cu<sub>100-X</sub> solid solutions (where X= 10, 30,50,70 & 90 wt%) and intermetallics FeAl, Al<sub>5</sub>Fe<sub>2</sub> and Al<sub>3</sub>Fe have been obtained by mechanical alloying.

Structural changes of materials during the milling and heat treatment process have been studied by X-ray diffraction, Differential of thermal analysis, Mössbaur spectroscopy, electrical resistivity and hardness measurements while Morphology of milled powders was followed using both Optical and Scanning electron microscopy. Also, lattice parameter, particle size and root mean square (rms) strain of milled powders as function of milling time were calculated.

Results showed that mechanical alloying process is carried out through fine stages particle flattening, welding predominance, equiaxed particle formation, random welding orientation and study state composite powder. Moreover FeAl and Al<sub>5</sub>Fe<sub>2</sub> intermetallics could be synthesized directly by mechanical alloying where as Al<sub>3</sub>Fe only formed after heat treatment of milled powders.

#### Contents

|                   | No.                                   | Page       |
|-------------------|---------------------------------------|------------|
| ACKNOWLED         | OGMENT                                | ; <b>i</b> |
| ABSTRACT          |                                       | . ii       |
| C0NTENTS          |                                       | iv         |
| 1. INTRODUC       | TION                                  | · 1        |
| 2. LITERATU       | RE SURVEY                             | 3          |
| 2.1 Introdu       | ction                                 | 3          |
| 2.2 Mechai        | nical Alloying Processing             | 5          |
| 2.2.1 Equ         | uipment of Mechanical Alloying        | 5          |
| 2.2.1.1           | Attritor                              | 5          |
| 2.2.1.2           | Spex Mill                             | 7          |
| 2.2.1.3           | Ball Mill                             | 10         |
| 2.2.1.4           | Large Diameter Ball Mill              | 10         |
| 2.2.1.5           | Special Design Mill                   | 10         |
| 2.2.2 Par         | rameters Affecting the M.A. Process   | 13         |
| 2.2.3 Me          | chanical Alloying Mechanism           | 18         |
| 2.2.4 Coi         | ntamination                           | 21         |
| 2.2.5 <b>Ap</b> ] | plications of Mechanical Alloying     | 22         |
| 2.2.5.1           | Oxide dispersion- strengthened alloys | 22         |
| 2.2.5.2           | Coating applications                  | 24         |
| 2.2.5.3           | Extended solid solutions              | 25         |
| 2.2.5.4           | Amorphization by mechanical alloying  | 26         |

|                                | 2.2.5.5                      | Crystallization of the amorphous phase            | 27 |
|--------------------------------|------------------------------|---------------------------------------------------|----|
|                                | 2.2.5.6                      | Nanocrystalline materials by mechanical alloying  | 28 |
|                                | 2.2.5.7                      | Chemical reactions induced by mechanical alloying | 29 |
|                                | 2.2.5.8                      | Solid solution                                    | 29 |
|                                | 2.2.5.9                      | Immiscible alloy systems                          | 30 |
|                                | 2.2.5.10                     | Intermediate Phases                               | 31 |
| 2                              | .2.6 <b>Stru</b>             | cture/ Property Relationship in MA Process        | 33 |
|                                | 2.2.6.1                      | Microstructure changes                            | 33 |
|                                | 2.2.6.2                      | X-Ray Diffraction                                 | 33 |
|                                | 2.2.6.3                      | Differential Thermal Analysis (DTA)               | 35 |
|                                | 2.2.6.4                      | Differential Scanning Calorimeter (DSC)           | 38 |
|                                | 2.2.6.5                      | Hardness                                          | 38 |
|                                | 2.2.6.6                      | Transmission electron microscopy (TEM)            | 40 |
|                                | 2.2.6.7                      | Modeling of the Milling process                   | 42 |
| 3. EXPERIMNTAL                 |                              |                                                   | 46 |
| 3.1 Raw Material               |                              | 46                                                |    |
| 3.2                            | 3.2 Type of Mill             |                                                   | 47 |
| 3.3                            | 3.3 Powders Handling         |                                                   | 47 |
| 3.4                            | 3.4 Powder Structure         |                                                   | 50 |
| 3.5                            | 3.5 Powder Hardness          |                                                   | 51 |
| 3.6                            | 3.6 X-ray Diffraction        |                                                   | 51 |
| 3.7 Differential Analyses, DTA |                              |                                                   | 52 |
| 3.8 Mőssbauer                  |                              | 54                                                |    |
| 3.9                            | 3.9 Consolidation of Powders |                                                   |    |

| 4. RESULTS AND DISCUSSION                                 |             |  |
|-----------------------------------------------------------|-------------|--|
| 4.1 Mechanical Alloying of Binary (Fe-Cu) Powder Mixtures | <b>5</b> 59 |  |
| 4.1.1 Microstructure Evolution of (Fe-Cu) powders         | 61          |  |
| 4.1.2 Powder Hardness                                     | 66          |  |
| 4.1.3 XRD study                                           | 70          |  |
| 4.1.4 Instability of Solid Solution Phases                | 89          |  |
| 4.1.5 DTA Measurement and Kinetic Analysis                | 100         |  |
| 4.1.6 Mössbauer Spectroscopy Analysis                     | 106         |  |
| 4.1.7 Densification of (Fe-Cu) Powder                     | 115         |  |
| 4.1.8 Electrical Resistivity Measurement                  | 123         |  |
| 4.2. Mechanical Alloying of Binary (Fe-Al) Alloys         | 129         |  |
| 4.2.1 Structural Morphology of (Fe-Al) Powders            | 131         |  |
| 4.2.2 Hardness Measurements of (Fe-Al) powders            | 133         |  |
| 4.2.3 XRD Analysis                                        |             |  |
| 4.2.4 Synthesis of Intermetallic                          |             |  |
| 4.2.5 Consolidation of Fe-Al Powders                      |             |  |
| 5. CONCLUSIONS                                            |             |  |
| 5.1 Mechanical Alloying of (Fe-Cu) Binary System          |             |  |
| 5.2 Mechanical Alloying of (Fe-Al) Binary System          | 159         |  |
| REFERENCES                                                | 161         |  |



# Chapter 1 INTRODUCTION

