Expression of Osteopontin in Patients with Thyroid Dysfunction Thesis

Submitted for Partial Fulfillment of Master Degree in Endocrinology & Metabolism

Ву

Maged Saied Fathy Ahmed Hossameldin

M.B,B.CH
Supervised by

Prof. Dr. Hanan Mohamed Amer

Professor of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Ass.Prof.Dr. Inas Mohamed Sabry

Ass. Professor of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Dr. Merhan Sami Nasr

Lecturer of Internal Medicine & Endocrinology
Faculty of Medicine Ain-Shams University
Faculty of Medicine,
Ain-Shams University
2015

نسبة الاوستيوبنتن بالدم و علاقته باعتلال وظائف الغدة الدرقية توطئة للحصول على درجة الماجستير في أمراض الغدد الصماء والأيض مقدمة من

الطبيب/ ماجد سعيد فتحي احمد حسام الدين بكالوريوس الطب والجراحة جامعة عين شمس

> تحت إشراف أ.د/ حنان محمد عامر

أستاذ أمراض الباطنة والغدد الصماء والسكر كلية الطب- جامعة عين شمس

أم د/ ايناس محمد صبري

أستاذ مساعد أمراض الباطنة والغدد الصماء والسكر كلية الطب حامعة عين شمس

د/ میر هان سامي نصر

مدرس أمراض الباطنة والغدد الصماء والسكر كلبة الطب- جامعة عبن شمس

> كلية الطب جامعة عين شمس 2015

Contents

Contents

Subjects Pa		
List of contents	I	
List of Tables	II	
List of Figures	IV	
List Of Abbreviations	VI	
• Introduction	1	
Aim of the work	2	
• Review of Literature		
♦ Chapter (1): Hyperthyroidism	3	
♦ Chapter (2): Hypothyroidism	33	
♦ Chapter (3): Osteopontin	66	
Subjects and Methods	87	
• Results	102	
• Discussion	115	
• Summary	120	
• Conclusion	122	
• Recommendations	123	
• References	124	

List of Tables

Table No.		Titl	e Cartino	Pa	ige
Table (1):	Etiology Characterist	of ic Fea	Hyperthyroidism tures	and	6
Table (2) :	-		een group I, group II I all parameters	and	105
Table (3) :	Comparison as regard all		een group I and grouneters	up II	106
Table (4) :	Comparison as regard all		een group I and grou meters	p III	107
Table (5) :	Comparison as regard all		een group II and grou	ıp III	108
Table (6) :	Comparison group III as		een group I, group II I TSH	and	109
Table (7) :	Comparison group III as		een group I, group II l fT4	and	110
Table (8):	Comparison group III as		een group I, group II I fT3	and	111

Rist of Tables

Table (9) :	Comparison between group I, group II and group III as regard Osteopontin	112
Table (10):	Correlation between Osteopontin and all variables (Age, Weight, BMI, HbA1C, FBG, 2hrPP, Calcium, Phosphorus, Alkaline	113
	Phosphatase, Creatinine, Urea, TSH, Ft3 and Ft4) in patients groups	
Table (11) :	The ROC curve between patients and controls as regard Osteopontin	114

List of Figures

Figure No.	Title Page	
Figure (1):	Demonstrating some Signs and Symptoms of Hyperthyroidism	5
Figure (2):	Thyroid Scan in Graves' Disease vs. Normal	11
Figure (3):	Pretibial Myxedema in Grave Disease	11
Figure (4):	Eye signs in Hyperthyroidism due to Grave Disease	12
Figure (5):	Hyperthyroidism treatment algorithm with antithyroid drugs	14
Figure (6):	Site of Action of Antithyroid drugs	14
Figure (7):	Signs and Symptoms of Hypothyroidism	37
Figure (8):	Congenital Hypothyroidism Signs and Symptoms	48
Figure (9):	Fate of Untreated Hypothyroidism	48
Figure (10):	Differences between Hyperthyroidism and Hypothyroidism	65

List Of Sigures

Figure (11):	OPN General Structure	68
Figure (12):	OPN potential mechanism of action	68
Figure (13):	Comparison between group I, group II and group III as regard TSH	109
Figure (14):	Comparison between group I, group II and group III as regard fT4	110
Figure (15):	Comparison between group I, group II and group III as regard fT3	111
Figure (16):	Comparison between group I, group II and group III as regard Osteopontin	112
Figure (17):	Showing the Cutpoint and Sensitivity and Specificity	114
Figure (18):	The AUC (area under curve) for Osteopontin	114

List of abbreviations

AACE	American Association of Clinical
	Endocrinologist
AIT	Autoimmune Thyroiditis
Alk.Ph.	Alkaline Phosphatase
AUC	Area Under Curve
BMI	Body Mass Index
ANOVA	Analysis of Variance Tests
Ca	Calcium
Ca	
CHT	Congenital Hypothyroidism
CKD	Chronic Kidney Disease
Creat	Creatinine
CXR	Chest X-Ray
dl	deciliter
ECG	Electrocardiogram
e.g.(i.e.)	exempli gratia(for example)
FBG	Fasting Blood Glucose
FDA	US Food and Drug Administration
fT3	free Triiodothyronine
fT4	Thyroxine

List of Abbreviations

GD	Grave's Disease
HBA1C	Glycosylated Hemoglobin
IV	Intravenous
IQ	intelligence quotient
Kg	Kilograms
LT4	Levothyroxine
m2	miter square
mg	milligram
μg	microgram
mIU/L	mille International Unit/ litter
MNG	Multi Nodular Goiter
NHANES	The third National Health and Nutrition
III	Examination Survey
ng	nanogram
NPV	Negative Predictive Value
OPN	Osteopontin
pg	picogram
Ph(PO4)	Phosphorus
PPV	Positive Predictive Value
ROC Curve	Receiver Operating Characteristic curve
ROC Curve	analysis

List of Abbreviations

SD	Standard Deviation
Sens	Sensitivity
SCH	Subclinical Hypothyroidism
SLE	Systemic lupus erythematosus
Spes	Specificity
2hrPPBG	Two Hours Post Prandial Blood Glucose
TgAb	antithyroid peroxidase antibodies
TNG	Toxic Nodular Goiter
TPOAb	antithyroid peroxidase antibodies
TSH	Thyroid Stimulating Hormone
%	Percentage
°C	degree Celsius

Introduction

Thyroid dysfunctions are common endocrine problems. They are often misdiagnosed, misunderstood, and frequently overlooked. These disorders affect almost every aspect of health. Most of them remain undetected because the clinical assessment alone lacks both sensitivity and specificity. As it is not sufficient enough we require the biochemical tests to confirm the diagnosis (*Shamon. 2009*).

As a consequence there is still great interest in new biomarkers that complement existing diagnostic tools (*Saha et al*, 2007).

Osteopontin, a glycoprotein that can be detected in plasma, it was found to be upregulated in several patients with hyperthyroidism and downregulated in hypothyroid patients so it may represent a new biomarker (**Zohar et al**, 2000).

These findings suggest that alterations in thyroid status can change serum osteopontin concentration. So the measurement of this parameter may provide useful information regarding the diagnosis of thyroid disease (*Gursoy et al*, 2010).

Aim of the work

In our study we aimed to study the correlation of serum osteopontin levels with parameters of thyroid hormone dysfunction.

Hyperthyroidism

Thyrotoxicosis is a condition having multiple etiologies, manifestations, and potential therapies. The term (Thyrotoxicosis) refers to a clinical state that results from inappropriately high thyroid hormone action in tissues generally due to inappropriately high tissue thyroid hormone levels (*Bahn et al, 2011*).

The term (hyperthyroidism), is a form of thyrotoxicosis due to inappropriately high synthesis and secretion of thyroid hormone(s) by the thyroid. Appropriate treatment of thyrotoxicosis requires an accurate diagnosis. In the United States, the prevalence of hyperthyroidism is approximately 1.2% (0.5% overt and 0.7% subclinical); the most common causes include Graves' disease (GD), toxic multinodular goiter (TMNG), and toxic adenoma (TA) (Singer et al, 1995).

The prevalence of hyperthyroidism in women is between 0.5 and 2%, and is 10 times more common in women than in men (*Hollowell et al*, 2002)

The prevalence data in elderly persons show a wide range between 0.4 and 2.0% (*Kanaya et al, 2002*) and a higher prevalence is seen in iodine-deficient areas(*Aghini-Lombardi et al, 1999*).

Signs & Symptoms of thyrotoxicosis:(Baskin et al, 2002)

Symptoms:

- Fatigue
- Palpitations
- Excessive sweating
- Diarrhea
- Poor concentration

- Weakness
- Heat intolerance
- Dyspnea
- Insomnia
- Oligomenorrhea

Signs:

- Weight loss
- Hair loss
- Tachycardia
- Proximal myopathy
- Warm, moist skin
- Hyperkinesis
- Emotional liability
- Hyperactive reflexes
- Thyroid enlargement (in most cases)
- Stare, lid lag, lid retraction, and exophthalmos (with Graves' disease).

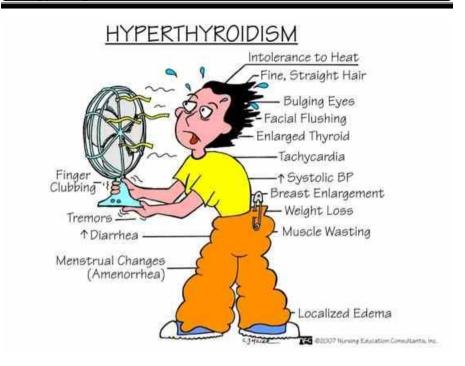


Figure (1): Demonstrating some Signs and Symptoms of Hyperthyroidism (Baskin et al, 2002)