Role of Mesotherapy in Chronic Cervical Pain due to Cervical Spondylosis

Chesis

Submitted for partial fulfillment of master degree in Physical Medicine, Rheumatology and Rehabilitation

By

Shaimaa Ahmed Mohamed El-Saidy

M.B., B.CH.

Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Mahmoud EL Tayeb Nasser

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine – Ain Shams University

Prof. Dr. Nadia Hamed Elarousi

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine – Ain Shams University

Dr. Takwa Badr Younes Badr

Associate Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2015

بِسْمِ اللَّهِ الرّحمَنِ الرّحيمِ

الْبَتَى الْمِهِرِيَ عَلِيَّ فَعَلِي قَالِحِيُّ اللَّهِ الْمِهِرِيَ عَلَيْكُ وَعَلَى وَالْحِيُّ اللَّهِ اللَّهُ

िसंचीचि| व्यवांष्ट्र दुष्टें व्वोंक्यों दें दें कुष्टें विवेषित के कि विवेष्टें विवेष्टें

صدق الله العظيم

النمل.. اية رقه ١٩

First and foremost, I thank **God** for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to **Prof. Dr. Mahmoud EX Tayeb Nasser**, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine - Ain Shams University firstly for giving me the honor to be his student and for his great support and stimulating views.

I would like **Prof. Dr. Nadia Hamed Elarousi**, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine - Ain Shams University, her active, persistent guidance and other whelming kindness have been of great help through this work.

Also I would like to extend my warmest gratitude to **Dr. Jakwa Badr Younes Badr**, Associate Professor of Physical Medicine, Rheumatology
and Rehabilitation, Faculty of Medicine - Ain Shams University, her
hard and faithful efforts have helped me to do this work.

I am also very grateful to all staff members and all my colleagues in the department of **Rheumatology and Rehabilitation**, Faculty of Medicine-Ain Shams University.

Also I would like to thank my **Family and Fiance** who stood behind me to finish this work and for their great support.

🗷 Shaimaa Ahmed Mohamed El-Saidy

Contents

Subject	Page No.
List of Abbreviations List of Tables List of Figures	ii
Introduction	1
Aim of the Study	4
Review of Literature	
Anatomy of Cervical Region	5
Cervical Spondylosis	32
muscloskeletal pain	81
Mesotherapy	112
Patients and Methods	142
Results	152
Discussion	168
Summary and Conclusion	181
Recommendations	186
References	188
Appendix	I
Arabic Summary	

List of Abbreviations

Full term Abbrev. **AIDS** : Acquired immunodeficiency syndrome ALL : Anterior longitudinal ligament ANA : Antinuclear Antibody AP : Anterior posterior **ATP** : Adenosine triphosphate **CBC** : Complete blood count CNS : Central nervous system COX-1 : Cyclooxygenase-1 COX-2 : Cyclooxygenase-2 **CSF** : Cerebrospinal fluid **CSM** : Cervical spondylosis myelopathy **CT** : Computed tomography **CVLI** : Chronic venous lymphatic insufficiency CX : Cervical **DMPP** : Descending Modulatory pain pathways **ESR** : Erythrocyte Sedimentation Rate : Functional Magnetic resonance imaging **FMRI GABA** : Gamma-aminobutyric acid HF : High-frequency

IM : Intramuscular

LF : Low-frequency

LIT : Intradermal therapy

MEP : Motor evoked potentials

MM : Millimetres

MP : Methylpredinose

MPQ : McGill Pain QuestionnaireMRC : Medical Research Council

List of Abbreviations (Cont ..)

Abbrev. Full term

MRI : Magnetic resonance imaging

NAIDs : Non-steroidal anti-inflammatory drugs NDHN : Nociceptive dorsal horn neurones

NDI : Neck Disability Index

OFP : Edematous fibrosclerotic pannicule pathy

PAG : Periaqueductal gray

PET : Positron emission tomographyPNS : Peripheral nervous system

RA : Rheumatoid arthritis RF : Rheumatoid factor

RhFSH: Recombinant human follicle-stimulating hormone

ROM : Range of motion

RVM : Rostral ventromedial medulla

SCI : Spinal cord injurysCt : Salmon calcitonin

SEP : Somatosensory evoked potentials

SI : Signal intensity

TBI : Traumatic brain injury

TENS: Transcutaneous electrical nerve stimulation

VAS : Visual analog scale

WHO : World Health OrganizationYAG : Yttrium aluminum garnet

List of Tables

Table No	2. Title Page	No.
Table (1):	Movements of the neck and upper extremity and	
· /	their relative level of segmental association	28
Table (2):	Level of nerve root lesion and cutaneous	
` /	analgesia	28
Table (3):	Tendon jerks and associated nerves	
Table (4):	Neck Motion	
Table (5):	Type of lesion and the symptoms	
Table (6):	Description of clinical signs used in diagnosis	
. ,	of CS	45
Table (7):	Classification of intramedullary signal	
	intensity	54
Table (8):	Characteristics and functions of C fibre and A-	
	delta fibres	85
Table (9):	Characteristics of primary afferent fibres	92
	Useful definitions (Source: International	
	Association for the Study of Pain)	99
Table (11):	Topical ingredients used in traditional	
	mesotherapy cocktails, categorized by their	
	intended role	116
Table (12):	Common mesotherapy formulations purported	
	to benefit specific conditions	117
Table (13):	Tissue levels of Sodium (Na)-ketoprofen (µg)	
	detected by chromatography following local	
	intradermal	125
Table (14):	Tissue levels of procaine (µg) following LIT	
	or i.m. administration	126

List of Tables (Cont.)

Table No	o. Title	Page No.
Table (15):	Tissue levels of procaine (%) after I	LIT and
	i.m. administration	
Table (16):	Comparison between group I and g	group II
	regarding age, sex and duration of illne	-
Table (17):	Comparison between group I and g	
, ,	regarding pain VAS score	_
Table (18):	Comparison difference between grou	
` ,	group II regarding pain McGill score	-
Table (19):	Comparison between group I and g	
, ,	regarding functional NDI score	_
Table (20):	Comparison between group I and g	
` ,	regarding functional North Wick score	_
Table (21):	Comparison between group I and g	
, ,	regarding clinical Tenderness grade	_
Table (22):	Comparison between group I and g	
` ,	regarding clinical ROM grade	_
Table (23):	Comparison between group I and g	
` ,	regarding clinical MS grade	
Table (24):	Comparison between males and	
` ,	regarding change in clinical scores	
	both groups	
Table (25):	Correlation between age& duration o	
` ,	and change in clinical scores among	
	and group II	_

List of Figures

Figure N	o. Title Page No.
Figure (1):	Cervical spine anatomy
Figure (2):	Lateral radiograph of cervical spine showing all 7 vertebrae
Figure (3):	Cervical vertebra from C3-C7 has a vertebral body that is concave on its superior surface and convex on its inferior surface
Figure (4):	Atlas cervical spine
Figure (5):	Axis cervical spine
Figure (6):	Embryology of cervical spines
Figure (7):	Vasculature of vertebral region
Figure (8):	Ligaments of cx region
Figure (9):	Normal anatomy of lower cervical spine 14
Figure (10):	Cross-sectional anatomy of cervical spinal cord at the level of C3
Figure (11):	Movement of cervical spine between the atlas and axis
Figure (12):	Lateral rotation of the neck region
Figure (13):	Flexion and extension of cervical spines 27
Figure (14):	Cervical Examination
Figure (15):	Spinal and paraspinal Muscles
Figure (16):	Minerva body jacket
Figure (17):	Philadelphia collar
Figure (18):	A four-lead TENS unit
Figure (19):	Schematic diagram showing potential pathways activated

List of Figures (Cont.)

Figure N	o. Title Page No).
Figure (20):	Ultrasound unit (1 and 3 Hz) heads7	8
Figure (21):	Descartes' view of pain, taken from his treatise De l'homme	1
Figure (22):	Ascending pain pathways. DRG dorsal root ganglion, PAG periaqueductal grey matter 9	4
Figure (23):	Neuroanatomy of pain perception9	5
Figure (24):	Gate control theory of pain. Stimulation of $A\beta$ fibres activates inhibitory interneurones in the dorsal horn	7
Figure (25):	A three-step "analgesic ladder11	0
Figure (26):	Point by point	2
Figure (27):	Nappage Technique	3
Figure (28):	Epidermic technique	5
Figure (29):	Needles of mesotherapy 4mm, 6mm and 13mm	6
Figure (30):	Prototypical mechanical mesotherapy delivery "gun" (Photograph courtesy of MesoUSA, New Jersey)	8
Figure (31):	Mycobacterial growth in Ogawa culture media	9
Figure (32):	Steralization by povidone-iodine + Alcohol 70%	8
Figure (33):	Technique of Injection	9
Figure (34):	Comparison between group I and group II regarding pain VAS score	4
Figure (35):	Comparison between group I and group II regarding pain McGill score	6

List of Figures (Cont.)

Figure N	o. Title	Page No.
Figure (36):	Comparison between group I and regarding pain NDI score	group II 158
Figure (37):	Comparison between group I and regarding functional North Wick sco	
Figure (38):	Comparison between group I and regarding Tenderness grade reduction	
Figure (39):	Comparison between group I and regarding clinical ROM grade	
Figure (40):	Comparison between group I and regarding clinical MS grade	
Figure (41):	Negative correlation and significant age (years) and Tenderness	

Introduction

The International Association for the Study of Pain (IASP) has described pain as "an unpleasant sensory and emotional experience". Because pain is a subjective experience, clinicians and researchers rely on what the person reports about his/her own pain (*Merskey and Bogduk*, 2004).

The IASP in its classification of chronic pain defines *cervical spinal pain* as pain perceived anywhere in the posterior region of the cervical spine, from the superior nuchal line to the first thoracic spinous process (*Vaegter et al.*, 2013).

Cervical pain is a common medical condition. Neck pain can come from a number of disorders and diseases and can involve any of the tissues in the neck. Examples of common conditions causing neck pain are degenerative disc disease, neck strain, neck injury such as in whiplash, a herniated disc, or a pinched nerve. Neck pain can come from common infections, such as virus infection of the throat, leading to lymph node (gland) swelling (*Jones and Ernst*, 2012).

Symptoms of neck pain including pain at the back of the neck which may Spread to the upper back, shoulders, or arms, be worse with movement, Make the neck stiff or tender and cause headache, Nerve-related symptoms caused by pressure on the spinal nerve roots or spinal cord include numbness, tingling, or weakness in arm or hand, burning feeling when touch the skin of the arm or hand, leg numbness or weakness, and loss of the ability to control urination (bladder control) or bowel movements. These can be occur when there is pressure or injury to the spinal cord (*Graham et al.*, 2008).

The cause of neck pain could be determined from patient's history and physical examination, but sometimes tests such as X-rays, MRI scans and CT scans are required to find the exact cause, assess the spine and show disc problems (*Tran et al.*, 2013).

Italian Society of Mesotherapy (SIM) *define* Mesotherapy as a minimally invasive technique that consists of intradermal therapy (LIT) pharmaceuticals or other bioactive substances given in small quantities through dermal multi-punctures, where the injection site corresponds to the area of the pathological condition (*Maggiori*, 2004).

Mesotherapy consists of a series of "microinjections" of drug/active substance into the dermis using short needles where the needle is positioned at an appropriate angle depending on the thickness of the skin. Using a single needle, 4mm (27 gauge) or 13mm (30 or 32 gauge), positioned at 30–45 degree with respect to the skin surface was suggested. In general, 0.10–0.20mL of cocktail of drugs (NAIDS,

Lidocaine, muscle relaxant or other drugs) are injected at the injection points. If large areas are to be treated, the drug can be diluted (*Mammucari et al.*, 2011).

If used correctly, mesotherapy is effective in the treatment of painful musculoskeletal conditions, chronic venous lymphatic insufficiency (CVLI), oedematous fibrosclerotic panniculopathy (OFP, more commonly known as *cellulite*), intradermal vaccination (*Mammucari et al.*, 2011).

The proposed mechanism of action of mesotherapy is that solutions injected intracutaneously remain in the area longer than they would by deeper injection because they are slower to be cleared by general circulation. Further, it is felt that these solutions injected superficially but it continually penetrate into the deeper tissues (*Belhocine and Oussedik*, 2000).

The contraindications to mesotherapy include known hypersensitivity to any of the components, less than 18 years of age, pregnancy, lactation, patients on anticoagulants, cardiac drugs as hydralazine, calcium channel blocker and beta blocker, conditions like liver and kidney disorders, AIDS, seizure disorders, lupus and fibromyaligia (*Rohrich*, 2005).

Aim of the Study

To evaluate the effectiveness of mesotherapy as a technique of local administration of drugs for pain relief in cases of chronic cervical pain due to cervical spondylosis versus the effect of oral NSAIDs.