


Separation of some Individual Rare Earth Elements from Monazite Acidic Leach Liquor using Ion exchange resins

A Thesis
Submitted for phD. Degree of Science in Chemistry

By

Rania Ahmed Roshdy Ezz Eldeen

B.Sc. Chemistry 2003
M. Sc. In-Organic Chemistry 2011
Nuclear Materials Authority

Separation of some Individual Rare Earth Elements from Monazite Acidic Leach Liquor using Ion exchange resins

Rania Ahmed Roshdy Ezz Eldeen (M. Sc. In-Organic Chemistry 2011)

Submitted for phD. Degree of Science in Chemistry

Supervision

Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams university

Prof. Dr. Mohamed Shaban Atrees

Prof. of Physical Chemistry, Nuclear Materials Authority

Dr. Mohamed Demerdash Hashem

Assoc. Prof. of inorganic chemistry, Nuclear Materials Authority

Approval sheet Title of Ph. D thesis

Separation of some Individual Rare Earth Elements from Monazite Acidic Leach Liquor using Ion exchange resins

By Rania Ahmed Roshdy Ezz Eldeen

Submitted for phD. Degree of Science in Chemistry Chemistry Department, Faculty of Science, Ain Shams University

Approved by:

Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Shaban Atrees

Prof. of Physical Chemistry- Nuclear Materials Authority

Dr. Ahmed Yahia Abd El-rahman

Prof. of Physical Chemistry-National Center for Metals

Dr. Adly Abdallah Hanna

Prof. of Inorganic Chemistry- National Research Center

Head of department

Prof. Dr. Ibrahim H. A. Badr

Ain shams University Faculty of Science Chemistry Department

Qualification

Name/ Rania Ahmed Roshdy Ezz Eldeen

Scientific degree/ ph. D

Department/ Chemistry

University/ Ain Shams University

B.Sc. / 2003

M.Sc. / 2011

Job/ chemist at nuclear materials authority

ACKNOWLEDGEMENTS

Above all, praise to ALLAH, the lord of the world, by whose grace this work has been completed and never leaving me during this stage.

My deep thanks also to **Prof. Mostafa M.H.Khalil,** Prof. of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain shams University for his supervision, guidance, valuable advice and patience through the duration of this study.

My deep thanks also to **Prof. Dr. Mohamed Shaban Atrees**, Prof. of Physical Chemistry, Nuclear Materials Authority, for suggesting the present topic of study and for continuous advice, supervision and valuable guidance during the progress of this work, without his efforts this work would not be possible.

I express my sincere gratitude to **Prof. Dr. Kamal Abdel Baky** Head of production sector, Nuclear Materials Authority, for his supervision, guidance, his help in the interpretation of the results, his support, dedication and true concern for his students has enabled me to maximize my learning experience. For that, I am most grateful.

I am very grateful my supervisor **Dr. Mohamed Demerdash Hashem, Dr.**Aziza Ibrahim Lutfi, and **Dr. Hend Salem** Nuclear Materials Authority and I wish to thank them deeply for their valuable efforts, constant advice, continuous enthusiasm, helpful discussions and numerous helps during the course of this work.

My thanks and best wishes are extended to all members of Rare Earth Elements Separation Project, for their support and huge facilities offered in different ways during the progress of this work.

Of course, my life at NMA would not have been so colourful and cheerful without my great friends who have my days at NMA full of sweet.

I cannot thank my husband and my family enough for their encouragement, and counsel. To my parents, I owe everything. They have taught me many things. So I thank all my family members for their support, kindness, love and encouragement.

Rania Roshdy

فصل بعض العناصر الارضية النادرة من الوسط الحامضي الناتج من اذابة خامة المونازيت باستخدام راتنجات التبادل الايونى

ر سالة مقدمة من

رانيا احمد رشدى عزالدين (ماجستير الكيمياء ٢٠١١)

درجة دكتوراة الفلسفة في العلوم تخصص "الكيمياء غير العضوية" تحت إشران:

أ.د/ مصطفي محمد حسن خليل

أستاذالكيمياء غير العضوية كلية العلوم جامعة عين شمس

أ.د/محمد شعبان عتريس

استاذ الكمياء الفيزيائية- هيئه المواد النوويه

د/ محمد دمرداش هاشم

استاذ مساعدالكيمياء غير العضوية- هيئه المواد النوويه

كلية العلوم

فصل بعض العناصر الارضية النادرة من الوسط الحامضي الناتج من اذابة خامة المونازيت باستخدام راتنجات التبادل الايونى

إعداد

رانيا احمد رشدى عزالدين

(ماجستير الكيمياء ٢٠١١)

للحصول علي

ىرجة بكتوراة الفلسفة في العلوم تخصص "الكيمياء غير العضوية"

قسم الكيمياء كلية العلوم – جامعة عين شمس ٢٠١٧

كلية العلوم قسم الكيمياء

عنوان الرسالة:

"فصل بعض العناصر الارضية النادرة من الوسط الحامضي الناتج من اذابة خامة راتنجات التبادل الايونى المونازيت باستخدام"

اسم الطالب / رانيا احمد رشدى عز الدين

الدرجة العلمية / الدكتوراة

القسم / الكيمياء

الكلية / العلوم

الجامعة / عين شمس

سنة المنح / ٢٠١٧

كلية العلوم

<u>شكر</u>

أشكر الأساتذة الذين قاموا بالإشراف وهم:

أ.د/ مصطفى محمد حسن خليل

استاذالكيمياء غير العضوية كلية العلوم- جامعة عين شمس

أ.د/محمد شعبان عتريس

استاذ الكمياء الفيزيائية- هيئه المواد النوويه

د/ محمد دمرداش هاشم

استاذ مساعدالكيمياء غير العضوية - هيئه المواد النووية

ثم الأساتذة الذين تعاونوا معى في البحث وهم:

أ.د/ كمال عبد الباقي علي ربيع

رئيس فطاع الانتاج- - هيئه المواد النووية

د/ عزیزة ابراهیم لطفی

استاذ مساعدالكيمياء غير العضوية - هيئه المواد النووية

وكذلك الهيئات الآتية:

- ١- مشروع فصل العناصر الأرضية النادرة-قسم مواد المفاعلات- هيئة المواد النووية.
 - ٢- قسم الكيمياء- كلية العلوم- جامعة عين شمس.

كلية العلوم رسالة / الدكتوراة

اسم الطالب/ رانيا احمد رشدى عزالدين

عنوان الرسالة / فصل بعض العناصر الارضية النادرة من الوسط الحامضي الناتج من اذابة خامة المونازيت باستخدام راتنجات التبادل الايوني

تحت (شر(ف:

أ.د/ مصطفي محمد حسن خليل أستاذالكيمياء غير العضوية كلية العلوم -جامعة عين شمس

أ.د/محمد شعبان عتريس استاذ الكمياء الفيزيائية - هيئه المواد النوويه

د/ محمد دمرداش هاشم استاذ مساعدالكيمياء غير العضوية - هيئه المواد النوويه

لجنة (التحاليم:

أ.د/ مصطفي محمد حسن خليل أستاذالكيمياء غير العضوية كلية العلوم -جامعة عين شمس

أ.د/محمد شعبان عتريس استاذ الكمياء الفيزيائية - هيئه المواد النوويه

أ.د/ احمد يحيا عبد الرحمن استاذ الكيمياء الفيزيائية – مركز بحوث وتطوير الفلزات.

أ.د/عدلي عبدالله حنا أستاذالكيمياء غير العضوية - المركز الفومي للبحوث.

الدرساك العليا: ختم اللاجازة:

الميزك الرسالة بتاريغ: / /١٧/

موانقة مجلس الثلية: / /١٠١٧ موافقة مجلس الجامعة: / /٢٠١٧

CONTENTS

		i
ACKNOWLEDGMENTS		_
ABSTRACT		iii
CONTENTS		V
LIST OF FIGURES		X
LIST OF TABLES		xvii
AIM OF WORK		xviii
CHAPTER I		
LITERATURE SURVEY		
1.1. Rare Earth Elements	1	
1.2. Mineral Recourses	3	
1.2.1. Monazite	4	
1.2.2. Bastnasite	6	
1.2.3. Xenotime	7	
1.3. Properties of the Atoms and Ions	7	
1.3.1. Lanthanide Contraction	7	
1.3.2. Electronic Configuration and Position in the	9	
Periodic table		
1.3.3. Oxidation States	11	
1.3.4. Magnetic Properties	11	
1.3.5. Characteristics of Rare Earth Elements		
Absorption Spectra	11	
1.3.6. Complexation of Lanthanides	13	
1.3.7. Eh-pH (Pourbaix) Diagrams	15	
1.4. Ore Processing.	16	
1.4.1. Physical processing of black sands	16	
1.4.2. Chemical treatment	19	
1.5. Group and Individual Separation of Rare Earths	23	
1.5.1. Fractional Crystallization	23	
1.5.2. Fractional Precipitation	24	
1.5.3. Selective Redox Approach		
(Separation Based on Valence Change)	24	

1.5.4. Ion Exchange	27
1.5.4.1. Chemistry of REE extraction by ion	
exchange resins	28
1.5.4.2. Current practice for REE extraction by	
ion exchange	29
1.5.5. Solvent Extraction	30
1.5.6. Most Recent Separation Techniques	33
1.6. Uses and applications of REEs.	34
1.6.1. Metallurgy	35
1.6.2. Catalysis	35
1.6.3. Energy Production	35
1.6.4. Glass and ceramics	36
1.6.5. Magnets	36
1.6.6. Phosphors	38
1.6.7. Reactor technology	38
1.6.8. Other applications	38
1.7. Biological Effects of Rare Earth Elements	38
1.8. Economic Aspects	38
1.8.1. Producers	38
1.8.2. World Mine Production and Reserves	39
1.8.3. REE Resources in Egypt	40
1.8.4. Consumption	41
1.9. Methods of Analysis and Determination of REE	41
1.9.1. Spectrophotometric Methods	41
1.9.2. Optical Emission Spectroscopy	44
1.9.3. X-ray Fluorescence and X-ray	45
Absorption Spectroscopy	
1.9.4. Neutron activation analysis	46
1.9.5. Ion Chromatography (IC)	46
CHAPTER II	
MATERIALS AND EXPERIMENTAL PROCEDU	RES
2.1. Chemicals and Reagents	47
2.1.1. Chemicals	47
2.1.2. Reagents	48
2.2. Instruments and Equipment	48
2.3. Materials	51

2.3.1. Egyptian monazite mineral beach black sand	51
2.3.2. Preparation of rare earth, thorium and uranium	
cakes from Egyptian monazite (85%, -125 mesh)	52
2.3.3. Preparation of the chitosan acryloyl	
thiourea (CATU) derivative	57
2.4. Analytical Procedures	59
2.5. Thorium Analysis	59
2.5.1. Oxalic Acid Hexamine Precipitation Method	59
2.5.2. Determination of Thorium Using Arsenazo III	60
2.6. Rare Earth Elements Analysis	60
2.6.1. Oxalate Precipitation Method	60
2.6.2. Determination of Total REEs Using Arsenazo III	61
2.7. Determination of U (VI)	61
2.8. Identification of the Produced Cake Concentrates	62
2.9. Experiments of different constituent's precipitation	63
from leach liquor	
2.9.1. Studying of Thorium Precipitation Efficiency	63
2.9.2. Studying of Rare Earths Precipitation Efficiency	64
2.9.3. Studying Uranium Precipitation Efficiency	64
2.10. Ion exchange REEs' separation procedure	65
2.10.1. Ion exchange REEs' separation procedure	
using citrate eluting agent.	65
2.10.2. Ion exchange REEs' separation procedure	
using chitosan acryloyl thiourea (CATU)	
derivative	66
2.11. Chitosan extraction	66
2.12. Uptake measurements	66
2.12.1. Adsorption Studies	66
2.12.2. Adsorption kinetics	67
2.12.3. Adsorption isotherms	67
2.13. Elution experiments	68

CHAPTER III

RESULTS AND DISCUSSIONS

3.1. Characterization of the Monazite Ore	70
3.1.1. Chemical analysis of monazite ore	70
3.1.2. Digestion of monazite by sulphuric acid	71
3.2. Separation of crude thorium concentrate	75
3.2.1 Purification stages	76
3.2.2. Purification of thorium from nitric acid media	79
3.2.3. Purification of thorium from hydrochloric	
acid media	81
3.2.4. Purification of thorium from sulfuric	
acid media	82
3.2.5. Thorium content separation and	
purification balanced pathway	82
3.2.6. Up-scaling experiment and pre-conceptual	
pilot unit	84
3.3. Uranium recovery	85
3.4. Group and Individual REEs Isolation and	
Precipitation from effluent solutions	87
3.4.1. REEs group purification	87
3.4.1. a. Hydrochloric Acid Dissolution	87
3.4.1. b. Selective Precipitation	87
3.4.2. REEs individual isolation and precipitation	87
3.4.2. a. Oxidation and precipitation of cerium	88
3.4.2. b. Dissolution of Ln (III) with nitric acid	90
3.4.2. c. Lanthanum and didymium separation	93
3.5. REEs separation from Rosetta Monazite Concentrate	
using acryloyl thiourea (CATU) derivative	100
3.5.1. Characteristics of the synthesized acryloyl	100
thiourea (CATU) derivative	
3.5.2. Uptake studies using batch method	103
3.5.3. Effect of adsorbent dose on sorption	105
3.5.4. The Effects of Initial Concentration of Metal	106
3.5.5. Effect of equilibration time on the adsorption	107
process of La (III)	
3.5.6. Equilibrium adsorption isotherm	109