TAXONOMIC ASPECTS OF TUTA ABSOLUTA (LEPIDOPTERA: GELECHIDAE) AND THE ROLE OF SOME BIOAGENTS IN CONTROLLING IT ON TOMATO PLANT IN EGYPT

By

SALEM MOHAMED SALEM AWAD

B.Sc. Agric. Sci. (Entomology), Ain-Shams University, 2002 M.Sc. Agric. Sci. (Entomology), Fac. Agric., Al-Azhar University, 2009

A thesis submitted in partial fulfillment

Of

The requirements for the degree of Doctor of Philosophy

in Agricultural Sciences (Economic Entomology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

2017

Approval Sheet

TAXONOMIC ASPECTS OF TUTA ABSOLUTA (LEPIDOPTERA: GELECHIDAE) AND THE ROLE OF SOME BIOAGENTS IN CONTROLLING IT ON TOMATO PLANT IN EGYPT

By

SALEM MOHAMED SALEM AWAD

B.Sc. Agric. Sci. (Entomology), Ain-Shams University, 2002 M.Sc. Agric. Sci. (Entomology), Fac. Agric., Al-Azhar University, 2009

This thesis for Ph.D. degree has been approved by:

Date of Examination: / /2017

Dr. Mohamed Abd El-Ghaffar Mahmoud Prof. Emeritus of Economic Entomology, Faculty of Agriculture, Al-Azhar University Dr. Mohamed Salem Abd-el Wahed Prof. Emeritus of Economic Entomology, Faculty of Agriculture, Ain Shams University Dr. Ashraf Helmi Fathi Associate Prof. of Economic Entomology, Faculty of Agriculture, Ain Shams University. Dr. Azza kamal Abd El Rhman Emam Prof. Emeritus of Economic Entomology, Faculty of Agriculture, Ain Shams University

TAXONOMIC ASPECTS OF TUTA ABSOLUTA (LEPIDOPTERA: GELECHIDAE) AND THE ROLE OF SOME BIOAGENTS IN CONTROLLING IT ON TOMATO PLANT IN EGYPT

By

SALEM MOHAMED SALEM AWAD

B.Sc. Agric. Sci. (Entomology), Ain-Shams University, 2002 M.Sc. Agric. Sci. (Entomology), Fac. Agric., Al-Azhar University, 2009

Under the supervision of:

Dr. Azza kamal Abd El Rhman Emam

Prof. Emeritus of Economic Entomology, Department of Plant Protection Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ashraf Helmi Fathi

Associate Prof. of Economic Entomology, Department of Plant Protection Faculty of Agriculture, Ain Shams University

Dr. Sami Sayed El Badawy

Head of Research, Department of Physiology pests, Plant Protection Research Institute, Agric, Research Center Salem Mohamed Salem Awad: Taxonomic Aspects of *Tuta absoluta* (Lepidoptera:Gelechiidae) and The Role of Some Bioagents in Controlling it on Tomato. Unpublished Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2017

ABSTRACT

Tomato plants are considered one of the most important economic vegetable crops in the world. Tomato plants infested with many important pests especially the tomato borer, Tuta absoluta which causes severe loss in yield. It also infest other Solanaceae crops such as potatoes and eggplants. This study aimed to cover some ecological aspects and control of T. absoluta on certain Solanaceae plants and commercial tomato cultivars and identifying this pest using Cytochrome c oxidase subunit I gene (MT-COI). The field study was done at Qaha region, Qalyubiya Governorate. According to host preference tomato hybrid Alissa F1 harbored the most relative density of T. absoluta larvae compared with pepper, eggplant and potato throughout two successive years 2013 and 2014. The susceptibility of five tomato cultivars; Alissa F1, Super strain B, G.S 12 F1, E603 F1(Logain) and Indos were also studied in early summer and summer plantations; 2013 and 2014. The highest seasonal mean number was recorded on Alissa F1cultivar with mean numbers of 5.53 larvae/10 leaflets for the two seasons, 2013 and 2014. While the lowest mean number (2.99 larvae/10 leaflets) was recorded on Logain (E603 F1) cultivar, for the two seasons. The highest mean number of glandular trichome type on underside of tomato leaflets was detected in Logain cultivar (22.6 trichome/1mm² leaflet) and the lowest number was on Alissa (3.8 and 3.2 trichome/1mm² leaflet). This trichome type related significantly and negatively with the mean number of larvae pest. In addition, chemical analysis of leaflets for the tested cultivars revealed that Logain tomato cv. leaflets had high contents of essential oil, acylsuger, flavonoids, phenolics, carbohydrates and protein compounds than the

high susceptible cultivars; Alissa cv. Secondary, the presence of the repellence and toxic volatile compounds (Two hydrocarbons; octacosane and hexacosane) in Logain tomato cv. while Alissa cv. had high content of the attractant hydrocarbon tetracosane. Fruits tomatoes damaged by T. absoluta larvae on investigated tomato cultivars were studied harvesting stage of early summer plantation in 2013 and 2014, the highest percentage of damage was significantly found in Alissa F1(36.00% and 42.84%) while the lowest percentage of damage was detected on Logain (14.78% and 7.11%) in both years. In addition, the glandular trichomes was negatively and significantly correlated with mean percentage of damaged fruits by *T. absoluta*. The seasonal abundance of *T. absoluta* on Alissa and Logain cultivars was studied in early and summer seasons, 2013 and 2014. In 2013 early summer, the highest population density of T. absoluta on Alissa and Logain cultivars was recorded on May 14th and May 21st; respectively. While in summer season, was recorded on July 9th and Aug. 20th. In 2014, the highest activity of this pest on Alissa and Logain cultivars was recorded on Apr. 22nd and Mar. 25th while in summer 2014, was recorded on Aug. 12th for both cultivars.

Effect of some weather factors (maximum, minimum temperatures and relative humidity) and the predator, *Nesidiocoris tenuis* on population dynamics of *T. absoluta* was studied on Alissa F1 and Logain cultivars during early and summer plantations; 2013 and 2014. Generaly, simple correlation indicated insignificant relationship between the weekly average maximum, minimum temperature and relative humidity. While, the predator was correlated significantly and positively with the mean number of this pest in both plantation seasons throughout both studied years. The use of some bio-agents for controlling *T. absoluta* were done. *Bacillus thuringiensis* was used against larval infestation while *Trichogramma evanescens* was used against *T. absoluta* eggs on Alissa cultivar during the early summer season of 2014 and 2015. *T. evanescens* proved to be more potent than *B. thuringiensis* in controlling *T. absoluta*. Results of PCR amplifications of five samples collected from, Aswan,

Minya, El sharkia, Kafr El Sheikh and Sinai using with the Cytochrome c oxidase subunit I gene (MT-COI) were analyzed and sequenced. The sequences were blasted into GenBank database and showed that only one biotype present in Egypt.

Keywords: *Tuta absoluta*, Tomato plant, Solanaceae crops, Host preference, Susceptibilty, Glandulare trichome, essential oil, Acylsugars, Weather factors, Predators, Bioagents, *Bacillus thuringiensis*, *Trichogramma evanescens*, PCR, Genbank.

ACKNOWLEDGMENTS

I express my deep thanks to **ALLAH**, who fulfill hopes, facilitate help to all of his creations and to all who request.

I am deeply indebted to **Prof. Dr. Azza kamal Emam**, Professor of Economic Entomology, Faculty of Agriculture, Ain-Shams University for suggesting the research work, kind supervision, faithful encouragement, and valuable advice. Her door has always been open for me and other young researchers. Without her unconditional support, encouragement and guidance this work could not be achieved.

I would like to express my deep thanks also to **Dr. Ashraf Helmi Fathi,** Associated Professor of Economic Entomology, Faculty of Agriculture, Ain- Shams University for his kind supervision, sincere assistance, kind encouragement and advice during the progress of this study.

I also express my deep gratitude to **Prof. Dr. Sami Sayed El Badawy**, Head of Research, Plant Protection Research Institute, Agric. Research Center, Ministry of Agriculture, for his kind supervision, sincere assistance, kind encouragement and precious advice during the progress of this study.

Sincere appreciation is due to **Prof. Dr. Saad Mohammed Moussa**, Head of Insect Molecular Biology and Biotechnology, Plant
Protection Research Institute, Agric. Research Center, Ministry of
Agriculture, for his kind supervision, allowing me to use his lab facilities
and chemicals that were used throughout my research work and
presenting the result of DNA part.

Special thanks for **Prof. Mohamed M. Abou-Setta** Head of Research, Plant Protection Research Institute, Agric. Research Center, Ministry of Agriculture, for his enthusiasm, support and advice, friendship, knowledge and continuous help in statistical analysis of the data. His help in presenting the obtained results is appreciated.

I would like to express my deep thanks also **Prof. Tarek Raies Amin** Head of Research, Plant Protection Research Institute, Agric.

Research Center, Ministry of Agriculture, for his help in chemical analysis and support.

Thanks are also due to **Dr. Mahmoud Magdy Elmosallamy,** Lecturer of Genetics, Department of Genetics, Faculty of Agriculture, Ain- Shams University for his help in PCR amplification of insect pest samples and gel electrophoresis.

Also, I would thank **Dr. Manal Farouk**, from AGRI for her help in DNA data analysis and support.

My thanks extend to staff members of **Plant Protection Department**, Faculty of Agriculture, Ain- Shams University, staff members of Pests **Physiology Department** and **Insect Molecular Biology** and Biotechnology Unit at Plant Protection Research Institute, Agric. Research Center and staff members of **Qaha Farm**, Qalyubiya Governorate, Egypt.

Finally, I am indebted forever to my parents, my **daughter** and members of my **family** through their help, support and continuous encouragement, during this work to come out.

CONTENTS

		Page
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	4
	2.1. Taxonomic history and synonyms of the tomato	4
	leaf miner, Tuta absoluta	
	2.2. Distribution maps of <i>T. absoluta</i> on tomato plant	4
	2.3. Host plants of <i>T. absoluta</i>	6
	2.4. Susceptibility of tomato cultivars to infestation with	6
	Tuta bsoluta	
	2.4.1. Role of trichomes in plant defense	7
	2.4.2. Role of Allelochemicals in plant defense	9
	2.4.2.1. Volatile compounds (Terpenes).	9
	2.4.2.2 .Acylsugar.	10
	2.4.2.3. Alkaloids	11
	2.4.2.4.Flavonoids	11
	2.4.2.5. Phenols	11
	2.4.2.5. Carbohydrates and Proteins	12
	2.5. Crop damage by <i>T. absoluta</i>	13
	2.6. Seasonal abundance of <i>T. absoluta</i> on tomato plant	14
	2.7. The effect of some biotic and abiotic factors on population fluctuation of <i>T. absoluta</i> .	15
		10
	2.8. Biological control of <i>T.absoluta</i>	19
	2.8.1.Trichogramma	19
	2.8.2. Bacillus thuringiensis	21
	2.9. Molecular Identification of <i>T. absoluta</i>	23
III.	MATERIALS AND METHODS	27
	3.1. Ecological studies	27
	3.1.1. Experimental area and design	27
	3.1.2. Sampling procedures	27
	3.1.3. Preferences of certain solanaceous plants to <i>T</i> .	28

		Page
	absoluta infestation	
	3.1.4. Susceptibility of certain tomato cultivars to T .	28
	absoluta infestation	
	3.1.5. Seasonal abundance	28
	3.1.6. Degrees of damage	28
	3.2. Control studies	29
	3.3. Scanning of leaflet surface features	29
	3.4. Determination of Secondary Metabolites in Tomato	30
	leaves	
	3.4.1. Isolation and identification of Tomato leaves	30
	volatile compounds	
	3.4.2. Assessment of acylsugar contents in tomato leaves	31
	3.4.3. Determination of total phenolic compounds	32
	3.4.4. Determination of total flavonoids content	33
	3.4.5. Determination of total alkaloids content	33
	3.4.6. Determination of total protein content	35
	3.4.7. Determination of total carbohydrates content	35
	3.5. Meteorological data	36
	3.6. Statistical Analysis	36
	3.7. Molecular identification of <i>T. absoluta</i>	36
	3.7.1. Sample collection	36
	3.7.2. DNA extraction	37
	3.7.3. Cytochrome oxidase subunit I gene(mtDNA COI)	38
	sequencing	
	3.7.4. PCR reaction mixture for 50 ml reaction	38
	3.7.5. Agarose gel electrophoresis of PCR products	38
IV.	Results and Discussion	41
	4.1. Host preference of <i>T. absoluta</i> on certain solanaceous	41
	plants.	
	4.2. Susceptibility of certain tomato cultivars to <i>T</i> .	46
	absoluta infestation	

	4.2.1. Early summer plantation	46
	4.2.2. Summer plantation	46
	4.3. Effect of tomato leaflet trichomes on <i>T. absoluta</i>	56
	infestation	
	4.4. Relation between mean number of glandular	57
	trichomes on tomato cultivars leaflets and percent	
	damaged fruits by T. absoluta	
	4.5. Role of Allelochemicals in tomato leaflets resistance	60
	of tomato cultivars against T. absoluta infestation	
	4.5.1. Volatile compounds	60
	4.5.2. Acylsugars	71
	4.5.3. Phenolics, Flavonoids and Alkaloids contents	72
	4.5.4. Total carbohydrates and proteins contents	73
	4.6. Seasonal abundance of <i>T. absoluta</i> on Alissa and	80
	Logain tomato hybrids	
	4.6.1 . Early summer plantation, 2013	80
	4.6.2. Summer plantation, 2013	80
	4.6.3. Early summer plantation, 2014	85
	4.6.4. Summer plantation, 2014	85
	4.7. Relation of some weather factors and population	90
	dynamics of T. absoluta as well as its predator N. tenuis	
	4.7.1. On Alissa tomato hybrid	90
	4.7.2. On Logain tomato hybrid	94
	4.8. Control studies	99
	4.9. Molecular identification of <i>T. absoluta</i>	103
V.	Summary	108
VI.	References	117
VII.	ARABIC Summary	

LIST OF TABLES

No.	Title	Page
1	Weekly mean numbers of T. absoluta larvae/10 leaflets on	43
	four solanaceous plants during 2013 early summer	
	plantation, at Qaha, Qalyubiya Governorate.	
2	Weekly mean numbers of T. absoluta larvae/10 leaflets on	43
	four solanaceous plants during 2013 summer plantation, at	
	Qaha, Qalyubiya Governorate.	
3	Weekly mean numbers of T. absoluta larvae/10 leaflets on	44
	four solanaceous plants during 2014 early summer	
	plantation, at Qaha, Qalyubiya Governorate.	
4	Weekly mean numbers of T. absoluta larvae/10 leaflets on	44
	four solanaceous plants during 2014 summer plantation, at	
	Qaha, Qalyubiya Governorate.	
5	Weekly mean numbers of T. absoluta larvae/10 leaflets on	49
	five cultivars of tomatoes during 2013 early summer	
	plantation at Qaha, Qalyubiya Governorate.	
6	Weekly mean numbers of <i>T. absoluta</i> larvae/10 leaflets on	49
	five cultivars of tomatoes during 2013 summer plantation	
	at Qaha, Qalyubiya Governorate.	
7	Weekly mean numbers of <i>T. absoluta</i> larva/10 leaflets on	51
	five cultivars of tomatoes during 2014 early summer	
	plantation at Qaha, Qalyubiya Governorate.	
8	Weekly mean numbers of <i>T. absoluta</i> larvae/10 leaflets on	51
	five cultivars of tomatoes during 2014 summer plantation	
	at Qaha, Qalyubiya Governorate.	
9	Annual mean numbers of <i>T. absoluta</i> larvae/10 leaflets on	52
	five cultivars of tomato plants during early and summer	
	plantations of year 2013 & 2014 at Qaha, Qalyubiya	
	Governorate.	

No.	Title	Page
10	Seasonal mean numbers of <i>T. absoluta</i> larvae/10 leaflets on	53
	five cultivars of tomato plants during early and summer	
	plantations of year 2013-2014 at Qaha, Qalyubiya	
	Governorate.	
11	Total mean numbers of <i>T. absoluta</i> larvae on five	54
	Cultivars of tomato plants during early and summer	
	plantations 2013 & 2014 at Qaha farm, Qalyubiya	
	Governorate.	
12	Factorial analysis of obtained data (Table 9,10 & 11).	55
13	Density and dimensions of trichomes of five tomato	85
	cultivars in relation to mean number of <i>T. absoluta</i> .	
14	Relation between mean number of glandular trichomes on	85
	tomato cultivars leaflet and percent of damaged fruits	
	during 2013 and 2014 plantations.	
15	Chemical composition of essential oils from leaves of four	65
	tomato cultivars.	
16	GC-MS. Fragmentation of major hydrocarbon components	66
	in four tomato cultivars(Alissa, Logain, Super strain and	
	G. S)	
17	Role of major active hydrocarbon components in the	70
	susceptibility degree of Logain and Alissa tomato cultivars	
	to <i>T. absoluta</i> infestation.	
18	Relationship between the glandular trichomes densities and	76
	the amount of their acylsugar secretions and mean of <i>Tuta</i>	
	absoluta larvae in the leaflets of four tested tomato	
	cultivars.	
19	Comparison between the Phenolics, Flavonoids and	76
	Alkaloids contents with the mean number of <i>Tuta absoluta</i>	
	larvae in the leaflets of four tested tomato cultivars.	

No.	Title	Page
20	Comparison between the Carbohydrates and Proteins	76
	contents with the mean number of Tuta absoluta larvae in	
	the leaflets of four tested tomato cultivars.	
21	Weekly mean numbers of T. absoluta larvae/10 leaflets on	82
	Alissa and Logain tomato cultivars and associated predator	
	with the corresponding weather factors during 2013 early	
	summer plantation, at Qaha, Qalyubiya Governorate.	
22	Weekly mean numbers of T. absoluta larvae/10 leaflets on	82
	Alissa and Logain tomato cultivars and associated predator	
	with the corresponding weather factors during 2013	
	summer plantation, at Qaha, Qalyubiya Governorate.	
23	Weekly mean numbers of <i>T. absoluta</i> larvae/10 leaflets on	87
	Alissa and Logain tomato cultivars and associated predator	
	with the corresponding weather factors during 2014 early	
	summer plantation, at Qaha, Qalyubiya Governorate.	
24	Weekly mean numbers of <i>T. absoluta</i> larvae/10 leaflets on	87
	Alissa and Logain tomato cultivars and associated predator	
	with the corresponding weather factors during 2014	
	summer plantation, at Qaha, Qalyubiya Governorate.	
25	Simple correlation and partial regression values as well as	93
	explained variance of some biotic and abiotic factors and	
	the population dynamics of <i>T. absoluta</i> on Alissa tomato	
	hybrid during early and summer plantations, 2013-2014.	
26	Simple correlation and partial regression values as well as	98
	explained variance of some biotic and abiotic factors and	
	the population dynamics of <i>T. absoluta</i> on Logain tomato	
	hybrid during early and summer plantations, 2013-2014.	
27	Mean numbers of <i>T. absoluta</i> larvae/10 leaflets and	101
	reduction percent according to the control study on Alissa	
	F1 tomato hybrid during 2014 early summer plantation.	

No.	Title	Page
28	Mean numbers of T. absoluta larvae/10 leaflets and	101
	reduction percent according to the control study on Alissa	
	F1 tomato hybrid during 2015 early summer plantation.	
29	Factorial analysis of controlling <i>T. absoluta</i> over two years	102
	using different treatments.	
30	Cytochrome oxidase subunit I (COI) gene of the Egyptian	107
	T. absoluta biotype compared with other sequences from	
	National Center for Biotechnology Information (NCBI)	