

Faculty of Medicine
Ain Shams University
Department of Anesthesiology,
Intensive Care and Pain Management

# Anesthesia for Electrophysiological Studies and Catheter Ablations

Essay Submitted in Partial Fulfillment of the Master Degree in Anesthesiology

Presented by

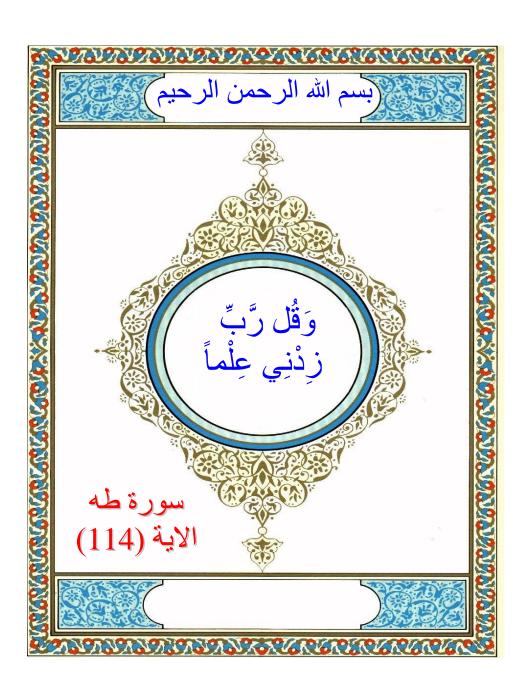
Diaa El Din Badr Metwally (MB, BCh)

Faculty of Medicine - Ain Shams University

**Under Supervision of** 

#### Prof. Dr. Samia Ibrahim Sharaf

Professor of anesthesiology, ICU and pain management Faculty of Medicine – Ain Shams University


#### Prof. Dr. Dalia Abd El Hameed Nasr

Professor of anesthesiology, ICU and pain management Faculty of Medicine - Ain Shams University

#### Dr. Mohamed Saleh Ahmed

Lecturer of anesthesiology, ICU and pain managemen Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016





**To Allah** goes My deepest gratitude and thanks for achieving any work in my life.

I would like to express my deepest gratitude to **Prof. Dr. Samia Ibrahim Sharaf**, Professor of Anesthesiology, Intensive Care & Pain Management, Faculty of Medicine – Ain Shams University for dedicating so much of her precious time and effort to help me complete this work. I really appreciate so much her constant guidance and assistance to me.

I would like to express my deepest gratitude to **Prof. Dr. Dalia Abd El Hameed Nasr**, Professor of Anesthesiology, Intensive Care & Pain Management, Faculty of Medicine - Ain Shams University for dedicating so much of her precious time and effort to help me complete this work. I really appreciate so much her constant guidance and assistance to me.

Indeed, words do fail me when I come to express my unlimited appreciation to **Dr. Mohamed Saleh Ahmed**, Lecturer of Anesthesiology, Intensive Care & Pain Management, Faculty of Medicine - Ain Shams University who was always there to help me, to encourage me and very kindly offer me his valuable remarks in every step of this work.

Finally, I am most grateful to **all members of my family** for giving me great support.

**Diaa El Din Badr Metwally** 

### List of Contents

| Subject                      | Page No. |
|------------------------------|----------|
| List of Figures              | I        |
| List of Tables               | III      |
| List of Abbreviations        | IV       |
| Introduction                 | 1        |
| Aim of the Essay             | 3        |
| Chapter (1)                  | 4        |
| Pathophysiology of cardiac   |          |
| arrhythmias                  |          |
| Chapter (2)                  | 36       |
| Electrophysiology techniques |          |
| Chapter (3)                  | 58       |
| Anesthetic management for    |          |
| electrophysiology techniques |          |
| Summary                      | 97       |
| References                   | 99       |
| Arabic summary               | 120      |

#### List of Figures

| Figure No.     | Title                                                                                                                           | Page No. |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure (1)     | The cardiac action potential.                                                                                                   | 5        |
| Figure (2)     | Refractory periods                                                                                                              | 7        |
| Figure (3)     | Mechanisms of enhanced automaticity                                                                                             | 9        |
| Figure (4)     | Overdrive suppression and post suppression warm-up period                                                                       | 11       |
| Figure (5)     | Representation of triggered activity                                                                                            | 12       |
| Figure (6)     | Anatomic reentry                                                                                                                | 19       |
| Figure (7)     | Schematic representation of an excitable gap                                                                                    | 20       |
| Figure (8)     | Entrainment                                                                                                                     | 23       |
| Figure (9)     | Mechanism of bradyarrhythmia                                                                                                    | 27       |
| Figure<br>(10) | Atrial flutter                                                                                                                  | 28       |
| Figure<br>(11) | Atrial fibrillation                                                                                                             | 29       |
| Figure<br>(12) | Induction of typical AVNRT by atrial ectopy                                                                                     | 31       |
| Figure (13)    | Initiation of atrioventricular nodal tachycardia with an atrium premature complex                                               | 31       |
| Figure<br>(14) | Monomorphic ventricular tachycardias                                                                                            | 33       |
| Figure (15)    | Polymorphic ventricular tachycardias                                                                                            | 35       |
| Figure<br>(16) | A Fluoroscopic image of a basic catheter set-up during a diagnostic electrophysiologic procedure in a patient with cardiomegaly | 40       |

I

### List of Figures (cont.)

| Figure No. | Title                                | Page No. |
|------------|--------------------------------------|----------|
| Figure     | Transseptal puncture using only      | 41       |
| (17)       | fluoroscopy                          |          |
| Figure     | A fluoroscopic image during          | 41       |
| (18)       | pulmonary vein isolation for atrial  |          |
|            | fibrillation ablation.               |          |
| Figure     | pulmonary vein isolation of atrial   | 44       |
| (19)       | fibrillation. with CARTO system      |          |
| Figure     | three-dimensional transesophageal    | 47       |
| (20)       | echocardiographic image for catheter |          |
|            | tip visualization                    |          |
| Figure     | Schematic of common lesion sets      | 55       |
| (21)       | used in atrial fibrillation ablation |          |
| Figure     | Room setup in electrophysiology      | 63       |
| (22)       | laboratory                           |          |

### List of Tables

| Table No.        | Title                                | Page No. |
|------------------|--------------------------------------|----------|
| Table (1)        | Mechanisms of Cardiac                | 8        |
|                  | Arrhythmias                          |          |
| Table (2)        | Agents and manipulations that may    | 14       |
|                  | lead to early after depolarizations. |          |
| Table (3)        | Types of Reentry                     | 18       |
| Table (4)        | Maneuvers for distinguishing         | 24       |
|                  | between the different arrhythmia     |          |
|                  | mechanisms.                          |          |
| <b>Table (5)</b> | Common Anesthetic Medications        | 82       |
|                  | and Their Electrophysiologic         |          |
|                  | Effects                              |          |
| <b>Table (6)</b> | Common Anesthetic Medications        | 84       |
|                  | and Antagonists                      |          |
| <b>Table (7)</b> | dosing regimens for heparin in left  | 87       |
|                  | heart procedures                     |          |

### List of Abbreviations

| Abbr. | Title                                      |
|-------|--------------------------------------------|
| ACT   | Activated Clotting Time                    |
| AF    | Atrial Fibrillation                        |
| ALARA | As Low As Reasonably Achieved              |
| AP    | Action Potential                           |
| APC   | Atrium Premature Complex                   |
| ASA   | American Society of Anesthesiologists      |
| AV    | Atrioventricular                           |
| AVNRT | Atrioventricular Nodal Reentry Tachycardia |
| BPAP  | Bilevel Positive Airway Pressure           |
| CPAP  | Continuous Positive Airway Pressure        |
| CS    | Coronary Sinus                             |
| DAD   | Delayed After Depolarizations              |
| DC    | Direct Current                             |
| EAD   | Early After Depolarization                 |
| EAM   | Electroanatomic Mapping                    |
| ECG   | Electrocardiogram                          |
| EP    | Electrophysiology                          |
| EPL   | Electrophysiology Laboratory               |
| ETCO2 | End Tidal Carbon Dioxide                   |
| HFJV  | High Frequency Jet Ventilation             |
| ICD   | Implantable Cardioverter Defibrillator     |
| ICE   | Intracardiac Echocardiography              |
| INR   | International Normalized Ratio             |
| LAA   | Left Atrial Appendage                      |
| LMA   | Laryngeal Mask Airway                      |
| LOM   | Ligament of Marshall                       |
| LSPV  | Left Superior Pulmonary Vein               |

### List of Abbreviations (cont.)

| Abbr. | Title                            |
|-------|----------------------------------|
| MAC   | Monitored Anesthesia Care        |
| MDP   | Membrane Diastolic Potential     |
| MV    | Mitral Valve                     |
| NMDA  | N-methyl-Daspartate              |
| PES   | Programmed Electric Stimulation  |
| RA    | Right Atrium                     |
| RF    | Radiofrequency                   |
| RT    | Reciprocating Tachycardia        |
| RUPV  | Right Upper Pulmonary Vein       |
| RV    | Right Ventricle                  |
| SVT   | Supraventricular Tachycardia     |
| TA    | Triggered Activity               |
| TEE   | Transesophageal Echocardiography |
| TH    | Threshold                        |
| VF    | Ventricular Fibrillation         |
| VT    | Ventricular Tachycardia          |
| WPW   | Wolff Parkinson White Syndrome   |

V



## Introduction

#### Introduction

Providing anesthesia in nonoperating room locations is becoming increasingly common. The field of electrophysiology (EP) and its patient population are growing, resulting in a greater need for anesthesiologists in the electrophysiology laboratory (**Kwak**, **2012**).

The procedures are complex and of long duration with patients who have multiple comorbidities. The electrophysiology laboratory (EPL) is a unique place in that arrhythmias are sought and sometimes even provoked so that they need to be eliminated (**Roger et al., 2012**).

Technologies for the treatment of arrhythmias are rapidly developing and these techniques are associated with unique complications. Also some patients are unable to lie flat, or tolerate the procedure, children, adolescents, and anxious adults, congenital heart disease, and anticipated long and protracted procedures require monitored anesthesia care (MAC) or a general anesthesia (Calkins et al., 2012).

It is important for the anesthesiologists to be familiar with the key aspects of EP procedures, and recording techniques and parameters in order to understand the impact of anesthetics or anesthesia techniques (Mahajan., 2012).

The following essay will highlight the techniques used by the cardiologists to map arrhythmias and discuss the different procedures involved in ablation. It will consider the anesthetic implications of these procedures and discuss the challenges of delivering safe anesthesia in electrophysiology laboratory.



## Aim of the Eassy

#### Aim of the essay

The aim of this essay is to focus the light on the anesthetic management of patients with arrhythmias of variable pathophysiology and other comorbidities undergoing electrophysiological studies and catheter ablations in electrophysiology laboratory.



## **Review of Literature**