Depth of Cure and Polymerization Shrinkage of the SonicFill Composite and a Nanohybrid Composite: A Comparative Study

Thesis

Submitted to the Department of Pediatric Dentistry and Dental
Public Health
Faculty of Dentistry
Ain Shams University

In

Partial fulfillment of the requirements of the Master Degree in Pediatric Dentistry

By

Mustafa Mahmoud AbdelRaziq FakhrAldeen

B.D.S Faculty of Dentistry Ain Shams University, 2007

2016

Supervisors

Dr. Amr Mahmoud Abdel-Aziz

Professor of Pediatric Dentistry and Dental Public Health
Department
Faculty of Dentistry
Ain-Shams University

Dr. Farid Mohammed Sabry El-Askary

Professor of Operative Dentistry Department and Vice Dean of
Students Affair
Faculty of Dentistry
Ain-Shams University

Dr. Mariem Osama Wassel

Lecturer of Pediatric Dentistry and Dental Public Health
Department
Faculty of Dentistry
Ain-Shams University

Dedicated to

My Father

&

My Mother

Acknowledgment

First, I would like to express my greatest gratitude to the Almighty *ALLAH*, the one and only who has given me the opportunity, strength, courage and blessing to pursue this work. However, conducting the research and writing this thesis required the patience, persistence and motivation of many people whom I would like to personally acknowledge. First, I would like to extend my deepest thanks to my supervisors:

Dr. Amr Abdel-Aziz, Professor of Pediatric Dentistry and Dental Public Health Department, Ain-Shams University, for his continuous guidance, support and unlimited encouragement.

Dr. Farid El-Askary, Professor of Operative Dentistry Department and Vice Dean of Students Affair, Ain-Shams University, for his close supervision, great effort, support and generous advice through this work.

Dr. Mariem Osama Mohamed Wassel, Lecturer of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, for her patience, time, continuous education and sincere advice.

Basma Nagi, My wife, Assistant lecturer of Pediatric Dentistry and Dental Public Health Department, Ain-Shams University, for her support, great effort, encouragement and patience.

Last, but certainly not least, to all my department staff, colleagues and friends for their utmost support and encouragement. To all of them, please accept my sincere and profound gratitude

Table of Contents

LIST OF TABLES	VI
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	X
INTRODUCTION	1
REVIEW OF LITERATURE	3
AIM OF STUDY	28
MATERIALS AND METHODS	29
RESULTS	44
DISCUSSION	58
SUMMARY	67
CONCLUSION	69
RECOMMENDATIONS	70
REFERENCES	71
ARABIC SUMMARY	

List of Tables

Table	Title	Page
NO.		No.
1	Materials; Compositions, Manufacturers	30
2	Experimental variables investigated	36
3	Interaction between experimental variables for DOC test	36
4	Interaction between experimental variables for polymerization shrinkage strain test	36
5	Two-Way ANOVA for the effect of material, thickness and their interaction on microhardness at top side.	45
6	Effect of material and thickness on microhardness at top side.	46
	Two-Way ANOVA for the effect of material, thickness and	
7	their interaction on microhardness at bottom side.	48
8	Effect of material and thickness on microhardness at bottom side.	49
9	Two-Way ANOVA for the effect of material, thickness and their interaction on relative microhardness (Top/Bottom %).	51
10	Effect of material and thickness on relative microhardness (Bottom/Top %).	52
	Two-Way ANOVA for the effect of material, thickness and	
11	their interaction on polymerization shrinkage	55
12	Effect of material and thickness on polymerization shrinkage.	56

List of Figures

Figure	Title	Page
NO.		No.
1	SonicFill composite	31
2	Herculite XRV Ultra composite	31
3	Spilt Teflon mold for DOC test	32
4	LED 3M ESPE Elipar TM	33
5	Digital micrometer	35
6	Nexus 4000 TM testing machine	39
7	Strain gage	41
8	Strain monitoring device.	42
9a	Mean microhardness at top side in the different materials	
	within each thickness.	47
9b	Mean microhardness at top side in the different thicknesses	
	within each material.	47
10a	Mean microhardness at bottom side in the different	
	materials within each thickness.	50
10b	Mean microhardness at bottom side in the different	
	thicknesses within each material.	50
11a	Mean relative microhardness (bottom/top %) in the different	
	materials within each thickness.	53
11b	Mean relative microhardness (bottom/top %) in the different	
	thicknesses within each material.	53
12	Strain versus time curves for SonicFill both thicknesses	54
13	Strain versus time curves for Herculite XRV Ultra both	34
13	thicknesses.	55
14a	Mean polymerization shrinkage in the different materials	33
1 4 a	within each thickness.	57
14b	Mean polymerization shrinkage in the different thicknesses	31
140	within each material.	57
	within each material.	31

List of Abbreviations

1. **ANOVA** = Analysis of variance.

2. **Bis-EMA** = Bisphenol A ethoxylated dimethacrylate

3. **Bis-GMA** = Bisphenol glycidyl methacrylate.

4. **DC** = Degree of conversion

5. **DOC** =Depth of cure

6. **EBPDMA** = ethoxylated bisphenol-A-dimethacrylate.

7. **FTIR** = Fourier transform infrared spectroscopy

8. \mathbf{h} = Hour

9. **ISO** =International Standards Organization

10. **KHN** = Knoop Hardness Number.

11. **LCU** =Light curing unit

12. **LED** =Light emitting diodes.

13. \min = minutes.

14. **mm** = millimeters.

15. **MPa** = Mega Pascal.

16. \mathbf{mW} = milli Watt

17. **nm** = nanometer.

18. **RBCs** = Resin based composites.

19. \mathbf{s} = seconds.

20. **SD** = Standard deviation

21. **SDR** = Stress decreasing resin.

22. **SiC** = Silicon Carbide.

23. **TEGDMA** = Triethylene glycol dimethacrylate.

24. **UDMA** = Urethane dimethacrylate.

25. μm = micrometer

INTRODUCTION

Introduction

Dental caries is a public health problem that affects preschool and high-school children throughout the world, leading to pain, chewing difficulties, speech problems, general health disorders, psychological problems, and lower quality of life. Although advanced preventive procedures significantly decrease the prevalence of caries on occlusal surfaces and buccal/lingual surfaces is still a considerable problem. (1)

During the last few decades, the increasing demand for esthetic dentistry have led to the development of resin composite materials for direct restorations with improved physical and mechanical properties, aesthetics and durability. (2)

Composite resins have better mechanical properties, such as compressive strength, than other aesthetic restorations such as conventional or resin-modified glass ionomers, suggesting a longer clinical life in regions submitted to occlusal loads. (3)

Research has indicated that the placement time of resin based composite restorations is significantly longer than the placement of amalgam restorations. The lack of cooperation of a child may determine that a resin-based composite is not the material of choice.

In 2010, a recent development has been the introduction of SonicFill* composite which was the first and only easy-to-use, single-step bulk fill composite system that doesn't require an additional capping layer. It provides according to the manufacturer's data the ability to place, adapt and cure posterior restorations with a single increment of material in cavities up to 5 mm deep.

The SonicFill system's composite incorporates a highly filled proprietary resin with special rheological modifiers that react to sonic energy. As sonic energy with specific amplitude is applied through the handpiece, the modifier causes the viscosity to drop (up to 87%), increasing the flowability of the composite, enabling quick placement and precise adaptation to the cavity walls. When the sonic energy is stopped, the composite returns to a more viscous, non-slumping state that is perfect for carving and contouring.

Little information is available about depth of cure and polymerization shrinkage of SonicFill composite which needs to be validated by doing more researches.

_

^{*} Kerr, USA.

REVIEW OF LITERATURE

Review of Literature

1. Resin based composites (RBCs):

1.1. Composition of RBCs:

Dental resin composites can be distinguished by differences in formulations tailored to their particular requirements as restoratives, sealants, cements and provisional materials as well. These materials are similar in that they are all composed of a polymeric matrix; typically a dimethacrylate, reinforcing fillers; typically made from radiopaque glass, a silane coupling agent for binding the fillers to the matrix, and chemicals that promote or modulate the polymerization reaction ⁽⁵⁾.

The most common matrix monomers are aromatic dimethacrylates. The double bonds at each end of these molecules undergo addition polymerization by free-radical initiation. Although these monomers can provide optimum optical, mechanical, and clinical properties, they are rather viscous and have to be blended with low molecular- weight diluent monomers so that a clinically workable consistency may be obtained upon incorporation of the

fillers. More recently low-shrinkage composites have been introduced that contain, for example, monomers with epoxy (also known as oxirane) functional groups at the ends. The polymerization of these monomers is initiated by cations. Other commercial resin composites utilize various monomers and filler technology to reduce polymerization shrinkage and consequently the shrinkage stresses ⁽⁶⁾.

The vast majority of monomers used for the resin matrix are dimethacrylate compounds. Two monomers that have been commonly used are bisphenol A glycidyl methacrylate (Bis-GMA) and urethane dimethacrylate (UDMA). Both contain reactive carbon double bonds at each end that can undergo addition polymerization initiated by free-radical initiators. The use of aromatic groups affords a good match of refractive index with the radiopaque glasses and thus provides better overall optical properties of the composites. Few products use both Bis-GMA and UDMA monomers ⁽⁷⁾.

The viscosity of the monomers, especially Bis-GMA, is rather high and diluents must be added, so a clinical consistency can be reached when the resin mixture is compounded with the fillers. Low molecular-weight compounds with difunctional carbon double bonds, for example, triethylene glycol dimethacrylate (TEGDMA), are