Thoracic manifestations of Behcet's disease by MSCT and CT angiography

Thesis
Submitted for partial fulfillment of M.Sc degree in
Radiodiagnosis

By

Ahmed Hakky Hussein Ismail

M.B.B.Ch. Faculty of Medicine, Cairo University

Supervised by

Assist.Prof. Noha Hossam El-din Behairy

Assistant Professor of Radiology Faculty of Medicine Cairo University

Dr. Iman Mohamed Hamdi

Lecturer of Radiology Faculty of Medicine Cairo University

Dr. Iman Ibrahim El-gazar

Lecturer of Rheumatology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2013

Acknowledgment

First and foremost thanks to **God** the Most Gracious, the Most Merciful.

I would like to express my deep gratitude to **Prof.**Noha Behairy, Professor of Radiodiagnosis, Cairo

University. He has given me guidance and advice in

every way he can during the course of this work.

This work would not have been possible without the help of **Dr. Iman Hamdi**, Lecturer of Radiodiagnosis, Cairo University, for his great help and support in performing this thesis.

This work would not have been possible without the help of **Dr. Iman El-gazzar**, Lecturer of Rheumatology, Cairo University, for his great help and support in performing this thesis.

My thanks and my love to all my professors and colleagues in the Radiology department for their support.

Last but not least I would like to say that I couldn't have reached this point in my life without the enduring efforts of my family, no words can give them their right or describe how I am indebted to them.

Abstract

Behçet's disease (BD) is a multisystem inflammatory disorder classified among the vasculitides, which can affect all types and sizes of blood vessels characterized by major symptoms of oral aphthous ulcers, uveitis, skin lesions and genital ulcers. Involvement of intestines, vessels and central nervous system (CNS) sometimes leads to a poor prognosis.

Although cases of Behçet's disease were reported from all around the world, it is more prevalent in Far East (Japan, Korea); Middle East (Iran, Iraq, Israel, Saudi Arabia, Kuwait, Syria) and countries around Mediterranean see (Turkey, Italy, Egypt, Greece, Morocco, Algeria, Tunis). Therefore, Behçet's disease occurs most commonly in the countries along the ancient "silk road" Clinical Diagnosis of Behçet Disease:According to the diagnostic criteria of the International Study Group for Behçet Disease, the diagnosis is based on the presence of recurrent oral ulcerations, along with two of the following criteria: (a) recurrent genital ulcerations, (b) eye lesions, including uveitis and retinal vasculitis, (c) skin lesions (folliculitis, erythema nodosum), and (d) positive skin pathergy test (pustule formation 24–48 hours following skin prick).

Behçet disease involving the chest can manifest as a wide spectrum of abnormalities. Aneurysms of the pulmonary arteries with or without thrombosis are a typical manifestation of Behçet disease. Involvement of the SVC and aorta may occur, and pulmonary findings include pulmonary hemorrhage and atelectasis, fibrosis, and air trapping. The mediastinum and pleura may also be involved. Knowledge of these various manifestations can be useful in diagnosing Behçet disease, documenting the cause of symptoms in patients who present with hemoptysis, and initiating appropriate therapy.

Spiral CT is useful in demonstrating the entire spectrum of thoracic manifestations of Behçet disease. Spiral CT is noninvasive and provides excellent delineation of the vessel lumen and wall and perivascular tissues as well as detailed information concerning the lung parenchyma, pleura, and mediastinal structures. CT angiography can be performed with only a small quantity of contrast material and may be used as an alternative to venography and angiography.

Conventional chest radiography is commonly used for initial assessment of pulmonary signs and symptoms of Behçet disease, for follow-up, and for assessment of response to therapy. The pulmonary parenchymal changes are nonspecific and appear as focal and diffuse areas of increased opacity. Chest radiographs are also useful for detection of hilar enlargement, which may be due to pulmonary artery aneurysms, and of mediastinal widening, which may be an ominous sign of an aneurysm developing in the thoracic aorta.

In our study, we are aiming to evaluate those patients diagnosed as Behcet disease whether symptomatic or asymptomatic for early detection of chest manifestations.

Keyword

CNS-BD-CT- MSCT- PAA

TABLE OF CONTENTS

List of abbreviations	I
List of figures	II - III
Tables & charts	IV
Introduction	1 - 3
Aim of work	4
Radiological anatomy of the lungs and its blood vessels	6 - 24
Techniques of MSCT Pulmonary angiography	25 - 32
Epidemiology of Behcet's disease	33 - 36
Pathology of Behcet's disease	37 - 52
CT findings of thoracic manifestations of Behcet's disease	53-69
Patients & methods	70 - 72
Results	73 - 77
Case presentation	78 - 88
Discussion	89 - 96
Conclusion & Recommendation	97 - 100
References	101 - 112
Arabic summary	

LIST OF ABBREVIATIONS

3D	Three dimensional
BD	Behcet's disease
BS	Behcet's syndrome
CT	Computed Tomography
СТА	CT angiography
СТРА	CT pulmonary angiography
CTV	CT venography
DVT	Deep venous thrombosis
FOV	Field of view
IVC	Inferior vena cava .
MDCT	Multi-detector computed tomography
MSCT	Multi-slice computed tomography
MIP	Maximal intensity projection
MPR	Multi-planner reconstruction
MRA	Magnetic resonance angiography
NBD	Neuro-Behcet's disease
PAA	Pulmonary artery aneurysm
SVC	Superior vena cava.
VR	Volume rendering

LIST OF FIGURES

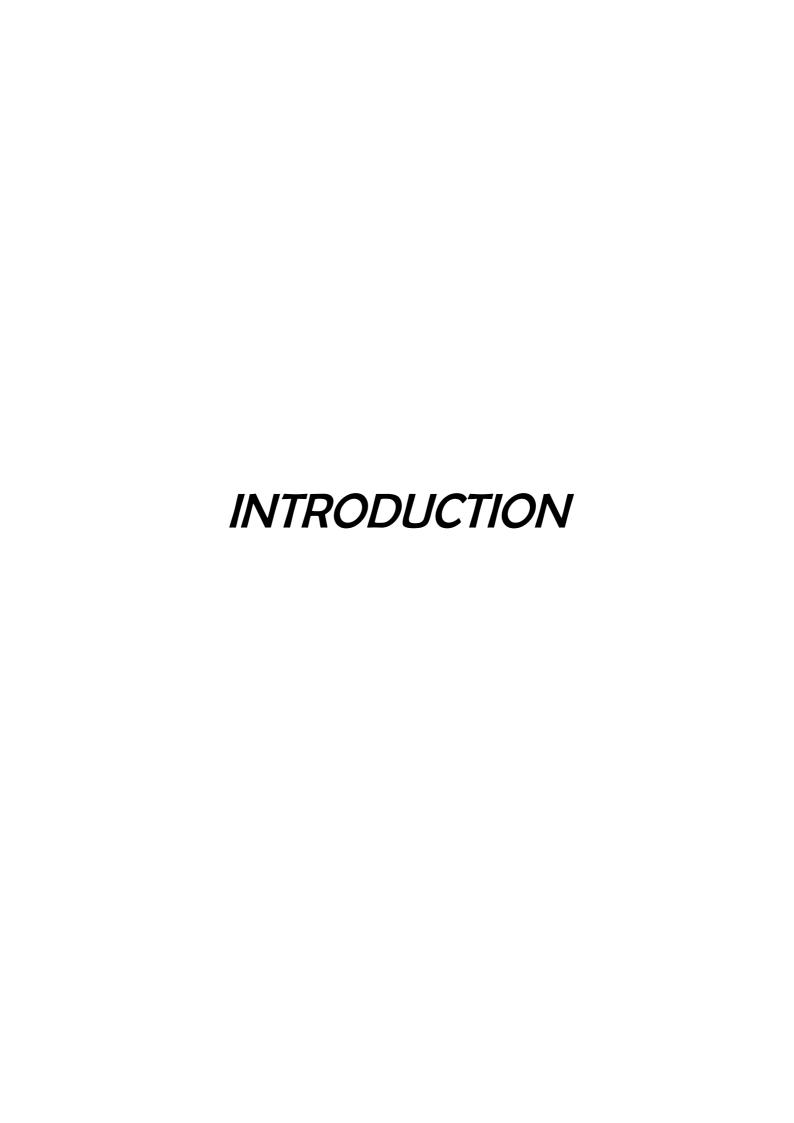

		Page
Figure 1	Diagrammatic illustration of Bronch-pulmonary segments	8
Figure 2	Paddle-wheel display of pulmonary arteries	9
Figure 3-	Segmental lung anatomy	10-13
Figure 11	Coronal multiplanar reformatted image depicts a normal bronchial branching pattern.	14
Figure 12	Chest CT Showing Pulmonary Artery Bifurcation	15
Figure 13	3D volume rendered computerized tomographic(CT) images emphasize the central location of the bifurcation of the main pulmonary artery	16
Figure 14	MDCT shows reconstructed coronal orientation of peripheral pulmonary vasculature	17
Figure 15	Curved planar reformatted images show normal pulmonary arteries	18
Figure 16	CT chest axial cut shows right and left pulmonary veins	19
Figure 17	CT scan shows all the pulmonary veins	20
Figure 18	nongated multi-detector row CT scan show normal pulmonary venous anatomy.	21
Figure 19	CT chest axial cut shows SVC	22
Figure 20	CT chest coronal cut shows SVC and brachiocephalic veins	22
Figure 21	right lateral volume-rendered view shows SVC and azygos vein	23
Figure 22	volume-rendered left posterior oblique perspective shows <i>IVC</i>	24
Figure 23	Gross aspect of saccular type of aneurysm in one of the pulmonary arteries of the left lower lobe	39
Figure 24	Microscopic picture shows Inflammatory occlusive thrombus formation in lumina of an aneurysm in a pulmonary artery	40
Figure 25	Microscopic picture shows Recanalization in an occlusive thrombus in a pulmonary artery	42
Figure 26	Gross aspect of wrinkled areas on the intimal surface of chronic aortic involvement in vasculo-Behçet's disease	43
Figure 27	Microscopic picture shows Fragmentation and splitting of elastic fibers in the aneurysm wall	44

Figure 28	Microscopic picture shows Organizing pneumonia pattern in lung of BD	46
Figure 29	Buccal aphthosis	47
Figure 30	Scrotal ulcers	48
Figure 31	Thoracic axial enhanced CT scan shows Giant right lower lobe artery aneurysm	58
Figure 32	Thoracic axial enhanced CT scan shows Partially thrombosed aneurysm of the left pulmonary artery branch	59
Figure 33	Thoracic axial enhanced CT scan shows huge partially thrombosed aneurysm of the left pulmonary artery associated with a small right upper lobe artery thrombosed aneurysm	59
Figure 34	Chest PA and lateral radiograph views show giant right pulmonary artery aneurysm	60
Figure 35	CT angiography of the chest showing multiple pulmonary arterial aneurysms with left pulmonary infarction	61
Figure 36	Sagittal and coronal reconstructed MSCT pulmonary angiography showing aneurysm of the lower-lobe pulmonary artery	61
Figure 37	Thoracic axial enhanced CT scan show extensive bilateral proximal pulmonary thrombosis	62
Figure 38	Thoracic axial enhanced CT scan show partial thrombosis of the superior vena cava and azygos vein and left upper pulmonary artery	63
Figure 39	Thoracic axial enhanced CT scan showing thrombosis of the superior vena cava (asterisk) with enhanced mediastinal collateral vessels	64
Figure 40	Chest radiograph shows bilateral nonspecific basal reticulomicronodularchanges in patient with BD	66
Figure 41	Thoracic axial CT scan shows right upper lobe pulmonary artery branch aneurysm associated with bilateral parenchymal ground-glass areas	67
Figure 42	Thoracic axial CT scan showing Middle lobe artery aneurysm associated with bilateral focal area of ground-glass opacities	68
Figure 43	Thoracic axial CT scan shows superior and inferior right lobes reticular pattern in a patient with BD.	69
Figure 44	Enhanced thoracic axial CT scan shows right lowler segment triangular opacity in connection with a pulmonary infarction associated with a posterior displacement of a thick greater fissure	69
Figure 45	Enhanced thoracic axial CT scan showing incomplete occluded aneurysm of the right lower lobe artery with a right inferior lobe partial consolidation	70

Figure 46	Chest radiograph in the same patient with BD and CBS showing Left basal pulmonary cavity secondary to a previous parenchymal infarct	71
Figure 47	Thoracic axial CT scan shows left lower lobe pulmonary cavity with homolateral focal ground-glass areas, bilateral thickening of the bronchial walls, and right lower lobe reticular and cystic changes	71
Figure 48	SMART PREP TECHNIQUE	73
Figure 49	CASE 1	83
Figure 50	CASE 2	84
Figure 51	CASE 3	85
Figure 52	CASE 4	86
Figure 53	CASE 5	87
Figure 54	CASE 6	88
Figure 55	CASE 7	89
Figure 56	CASE 8	90
Figure 57	CASE 9	91

LIST OF TABLES & CHARTS

		Page
Table 1	Computed Tomography Pulmonary Angiography Protocols	28
Table 2	Generic parameters for CTA of thorax	75
Table 3	The detailed CT pulmonary findings among the studied group of patients	81
Chart 1	Distribution of cases in this study	77
Chart 2	Distribution of cases according to pulmonary manifestations.	80

Introduction 2

INTRODUCTION

Behçet disease is a rare multisystemic and chronic inflammatory disorder with an unknown cause. Genetic predisposition (human leukocyte antigen [HLA], HLA-B51) and certain microorganisms are believed to play roles in its cause. It is most frequently seen in the third decade of life and is more frequent in men. The course of the disease is more severe in men than women and in those younger than 25 years at disease onset. Behçet disease is most frequently seen in Mediterranean, Middle East, and Far East countries. The highest prevalence rate, to our knowledge, was reported from Turkey as 80–370 per 100,000 (Ceylan et al, 2010).

Recurrent oral and genital ulcers and uveitis are the clinical triad of the disease. According to the diagnostic criteria of the International Study Group for Behçet's Disease (1990), the diagnosis is made on the detection of oral ulcers and at least two of the following criteria: recurrent genital ulcers, ocular lesions including uveitis and retinal vasculitis, skin lesions (folliculitis, erythema nodosum), and positive skin pathergy test (i.e., pustule formation 24–48 hours after skin prick) (Ceylan et al, 2010).

Behçet's disease involving the chest can manifest as a wide spectrum of abnormalities. Aneurysms of the pulmonary arteries, with or without thrombosis, are a typical manifestation of Behçet's disease (Hiller et al, 2004).

Pulmonary involvement is relatively infrequent, having been reported in 1%–10% of patients (Erkan, et al, 2001).

Introduction 3

computed tomography (CT) is the preferred imaging modality for depicting the thoracic manifestations of Behçet disease (Hiller et al, 2004).

The evident advantages of CT for the diagnosis of pulmonary vascular problems including pulmonary aneurysms and pulmonary embolism have become further enhanced by the introduction of multislice CT technology. It is now feasible to acquire a 1-mm scan of the entire thorax within one breath-hold (Schoepf et al, 2001).

Behçet disease may also affect joints, the gastrointestinal system, CNS, cardiovascular system, and the lungs. Vascular system involvement is seen in approximately 25–30% of patients and is the most common cause of mortality. The main pathologic process in Behçet disease is vasculitis and perivascular infiltration affecting vessels of various sizes (Ceylan et al, 2010).

In this literature, we review, discuss and illustrate the spectrum of CT findings in Behçet disease of the thorax, including vascular, pulmonary parenchymal, pleural, and mediastinal abnormalities.

Aim of work 4

Aim of work

The purpose of this study is to evaluate the radiological findings related to thoracic vascular system involvement and pulmonary, pleural, and mediastinal involvement of the patients diagnosed as Behcet's disease (BD) according to the diagnostic criteria of the International Study Group for Behçet's Disease. CT chest with contrast and CT pulmonary angiography are important diagnostic imaging techniques in the evaluation of patients with Behçet disease.

Review of literature

Review of literature 6

Anatomy