# The Effect of Pirfenidone on Immunological Liver and Lung Injury Induced by BCG in Female Balb/C Mice

#### **Thesis**

Submitted for partial fulfillment of the master degree of Pharmacology and Therapeutics

*B*y:

Maha Hussein Hashem Sabra

(M.B.B.Ch., 2010)

Demonstrator of Pharmacology and Therapeutics Faculty of Medicine Ain Shams University

#### Supervised by

#### Prof. Dr.Osama Mahmoud El Sirafy

Professor of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

#### Prof. Dr. Hala Salah Abdel-Kawy

Professor of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

#### Assist. Prof. Dr. Amany Helmy Mohamed

Assistant Professor of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

# تأثير البيرفيندون على الإصابة المناعية للكبد و الرئة المُحْدَث بواسطة لقاح السل على إناث فئران Balb/C

رسالى مقدمة توطئة للحصول على درجة الماجستير في علم الأدوية والعلاج

مقدمت من مها حسين هاشم صبرة معيد بقسم الأدوية و العلاج بعالوريوس الطب والجراحة (٢٠١٠)

تحت إشراف

# أ.د/ أسامسة محمود الصيرفي

أستاذ بقسم الأدوية و العلاج كلية الطب— جامعة عين شمس

# أ.د/ هالـه صـلاح عبد القـوى

أستاذ بقسم الأدوية والعلاج كلية الطب - جامعة عين شمس

# أ.م.د / أمانسي حلمسي محمسد

أستاذ مساعد بقسم الأدوية والعلاج كلية الطب— جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٦

## List of Contents

| Content                              | Pages |
|--------------------------------------|-------|
| List of tables                       | I     |
| List of figures                      | II    |
| List of abbreviations                | IV    |
| Introduction and aim of the work     | 1     |
| Review of Literature                 | 9     |
| * Fibrosis                           |       |
| * Cytokines involved in fibrosis     | 13    |
| * Liver fibrosis                     | 25    |
| * Pulmonary fibrosis                 | 30    |
| * Pirfenidone                        | 33    |
| *BCG induced liver and lung fibrosis | 36    |
| Materials and Methods                | 38    |
| Results                              | 47    |
| Discussion                           | 97    |
| Summary and conclusion               | 109   |
| Abstract                             | 114   |
| References                           | 116   |
| الملخص العربي                        |       |

## List of Tables

| Table | Title                                                                                                        | page |
|-------|--------------------------------------------------------------------------------------------------------------|------|
| 1     | Effect of pirfenidone on serum AST level (IU/L) in BCG induced liver fibrosis.                               | 49   |
| 2     | Effect of pirfenidone on serum ALT level (IU/L) in BCG induced liver fibrosis.                               | 52   |
| 3     | Effect of pirfenidone on liver tumor necrosis factor alpha level (pg/g) in BCG induced liver fibrosis.       | 55   |
| 4     | Effect of pirfenidone on liver transforming growth factor beta level (pg/g) in BCG induced liver fibrosis.   | 58   |
| 5     | Effect of pirfenidone on liver hydroxyproline level (mg/g) in BCG induced lung fibrosis.                     | 61   |
| 6     | Effect of pirfenidone on lung tumor necrosis factor alpha level (pg/g) in BCG induced lung fibrosis.         | 64   |
| 7     | Effect of pirfenidone on lung transforming growth factor beta level (pg/g) in BCG induced lung fibrosis.     | 67   |
| 8     | Effect of pirfenidone on lung hydroxyproline level (mg/g) in BCG induced lung fibrosis.                      | 70   |
| 9     | Effect of pirfenidone on mean area percentage of collagen fibers in the liver in BCG induced liver fibrosis. | 92   |
| 10    | Effect of pirfenidone on mean area percentage of collagen fibers in the lung in BCG induced lung fibrosis.   | 95   |

ı

#### List of Figures

| Figure | Title                                                                                                      | Page |
|--------|------------------------------------------------------------------------------------------------------------|------|
| 1      | Impact of components of the innate and adaptive                                                            | 12   |
|        | immunity on the activation of fibroblasts.                                                                 | 12   |
| 2      | Mechanism of NF-κB action.                                                                                 | 18   |
| 3      | Schematic diagram of Smad signal transduction.                                                             | 21   |
| 4      | Schematic overview of Jak/Stat signaling pathways.                                                         | 24   |
| 5      | Proposed mechanism of activation of hepatic stellate cells leading to fibrosis and cirrhosis.              | 27   |
| 6      | Mechanisms of pulmonary fibrosis.                                                                          | 32   |
| 7      | Effect of pirfenidone on serum AST level (IU/L) in BCG induced liver fibrosis.                             | 50   |
| 8      | Effect of pirfenidone on serum ALT level (IU/L) in BCG induced liver fibrosis.                             | 53   |
| 9      | Effect of pirfenidone on liver tumor necrosis factor alpha level (pg/g) in BCG induced liver fibrosis.     | 56   |
| 10     | Effect of pirfenidone on liver transforming growth factor beta level (pg/g) in BCG induced liver fibrosis. | 59   |
| 11     | Effect of pirfenidone on liver hydroxyproline level (mg/g) in BCG induced lung fibrosis.                   | 62   |
| 12     | Effect of pirfenidone on lung tumor necrosis factor alpha level (pg/g) in BCG induced lung fibrosis.       | 65   |
| 13     | Effect of pirfenidone on lung transforming growth factor beta level (pg/g) in BCG induced lung fibrosis.   | 68   |
| 14     | Effect of pirfenidone on lung hydroxyproline level (mg/g) in BCG induced lung fibrosis.                    | 71   |
| 15     | A photomicrograph of H&E liver section of a control group.                                                 | 73   |

| 16              | A photomicrograph of Masson's trichrome stain     | 73        |
|-----------------|---------------------------------------------------|-----------|
|                 | liver section of a control group.                 |           |
| 17&18           | A photomicrograph of H&E liver section of a       | 75        |
|                 | BCG group.                                        |           |
| 19&20           | A photomicrograph of H&E liver section of a       | <b>76</b> |
|                 | BCG group                                         | 70        |
| 21              | A photomicrograph of Masson's trichrome stain     | 77        |
|                 | liver section of a BCG group.                     | 11        |
| 22&23           | A photomicrograph of H&E liver section of a       | <b>79</b> |
|                 | BCG+Pirfenidone group.                            | 19        |
| 24              | A photomicrograph of Masson's trichrome stain     | 80        |
|                 | liver section of a BCG+Pirfenidone group.         | ou        |
| 25&26           | A photomicrograph of H&E lung section of a        | 92        |
| 20020           | control group.                                    | 82        |
| 27              | A photomicrograph of Masson's trichrome stain     | 92        |
| _,              | lung section of a control group.                  | 83        |
| 28              | A photomicrograph of H&E lung section of a        | 05        |
| 20              | BCG group.                                        | 85        |
| 29&30           | A photomicrograph of H&E lung section of a        | 86        |
| 27000           | BCG group.                                        | 00        |
| 31              | A photomicrograph of Masson's trichrome stain     | 87        |
| 0.1             | lung section of a BCG group.                      | 0/        |
| 32&33           | A photomicrograph of H&E lung section of a        | 89        |
| 3 <b>200</b> 33 | BCG+pirfenidone group.                            | 89        |
| 34              | A photomicrograph of H&E lung section of a        | 00        |
| 51              | BCG+pirfenidone group.                            | 90        |
| 35              | A photomicrograph of Masson's trichrome stain     | 00        |
|                 | lung section of a BCG+pirfenidone group.          | 90        |
| 2 .             | Effect of pirfenidone on mean area percentage of  |           |
| 36              | collagen fibers in the liver in BCG induced liver | 93        |
| _               | fibrosis.                                         |           |
|                 | Effect of pirfenidone on mean area percentage of  |           |
| 37              | collagen fibers in the lung in BCG induced lung   | 96        |
|                 | fibrosis.                                         |           |

#### **List of Abbreviations**

| Abb.  | Full term                                         |
|-------|---------------------------------------------------|
| ALT   | Alanine aminotransferase                          |
| AST   | Aspartate aminotransferase                        |
| BCG   | Bacillus Calmette Guerin                          |
| CTGF  | Connective tissue growth factor                   |
| CYP   | Cytochrome P                                      |
| ECM   | Extracellular matrix                              |
| ELISA | Enzyme-Linked Immunosorbent Assay                 |
| FADD  | Fas associated death domain                       |
| HCV   | hepatitis C virus                                 |
| H&E   | Hematoxyline and eosin                            |
| HIV   | Human Immunodeficiency Virus                      |
| HSC   | Hepatic stellate cell                             |
| Нур   | Hydroxyproline                                    |
| IL    | Interleukin                                       |
| INF   | Interferon                                        |
| IPF   | idiopathic pulmonary fibrosis                     |
| JAKs  | Janus Kinases                                     |
| LAP   | Latency associated peptide                        |
| LTBP  | Latent TGF-β binding protein                      |
| MMP   | Matrix metalloproteinases                         |
| NF-κB | Nuclear factor kappa B                            |
| PBS   | phosphate-buffered saline                         |
| PDGF  | Platelet derived growth factor                    |
| αSMA  | A smooth muscle actin                             |
| STATs | signal Tranducers and Activators of Transcription |
| TB    | Tuberculosis                                      |
| TGF-β | Transforming growth factor-β                      |
| TIMPs | Tissue inhibitors of metalloproteinase            |
| TNF-α | Tumor necrosis factor-α                           |
| TRADD | TNF receptor associated death domain              |
| TRAF2 | TNF receptor associated factor 2                  |



First of all, thanks are all to ALLAH, the most merciful, for supporting me all through my life.

I would like to express my deepest gratitude to **Prof. Osama Mahmoud El Sirafy**, Professor of pharmacology, Faculty of medicine, Ain Shams University. I feel highly honored by having the chance to work under his supervision. I had the privilege to benefit from his great knowledge.

I am also very grateful to **Prof. Hala Salah Abdel-Kawy**, Professor of pharmacology, Faculty of Medicine, Ain Shams University, for her close supervision, fruitful advices, and the great effort she has done throughout the whole work.

I am also very grateful to Assist. Prof. Dr. Amany Helmy Mohamed, Assistant professor of pharmacology, Faculty of Medicine, Ain Shams University, for her great efforts, unlimited experience and support throughout this work.

I also wish to express my thanks to **Dr. Heba Fikry**, Lecturer of Histology, Faculty of Medicine, Ain Shams University, for her valuable help in histopathological examination and comments.

Many thanks to **Prof. Essam Nasr** (Veterinary Serum and Vaccine Research Institute, bacterial diagnostic product research department, Abbasia, Cairo, Egypt) for the generous gift of the BCG vaccine.

No words could express my deep appreciation to my family for their great support and guidance.

# The Effect of Pirfenidone on Immunological Liver and Lung Injury Induced by BCG in Female Balb/C Mice

#### **Background**

Tissue fibrosis is a progressive, severely debilitating disease characterized by superabundant accumulation of extracellular matrix (ECM) leading to excessive tissue scarring, organ injury, function decline, and even failure (Insel et al., 2012; Friedman et al., 2013). Fibrosis is a condition arising from chronic state of various diseases such as scleroderma, rheumatoid arthritis, Crohn's disease, ulcerative colitis, systemic lupus erythematosus and idiopathic pulmonary fibrosis (IPF) (Wynn, 2011; Seki and Brenner, 2015). Fibrotic diseases have been largely overlooked, despite contributing to as many as 45% of deaths in the industrialized world (Wynn, 2007).

It has been noticed recently that there is an increase in the incidence of miliary tuberculosis (TB) affecting lung, bone marrow, liver, lymph nodes and others, owing to the Human Immunodeficiency Virus (HIV) epidemic, and the increasing list of causes of immunosuppression such as introduction of biological and immunosuppressive drugs for treatment of various medical disorders (Baker and Glassroth, 2004). BCG vaccine

## List of Contents

| Content                              | Pages |
|--------------------------------------|-------|
| List of tables                       | I     |
| List of figures                      | II    |
| List of abbreviations                | IV    |
| Introduction and aim of the work     | 1     |
| Review of Literature                 | 9     |
| * Fibrosis                           |       |
| * Cytokines involved in fibrosis     | 13    |
| * Liver fibrosis                     | 25    |
| * Pulmonary fibrosis                 | 30    |
| * Pirfenidone                        | 33    |
| *BCG induced liver and lung fibrosis | 36    |
| Materials and Methods                | 38    |
| Results                              | 47    |
| Discussion                           | 97    |
| Summary and conclusion               | 109   |
| Abstract                             | 114   |
| References                           | 116   |
| الملخص العربي                        |       |

## List of Tables

| Table | Title                                                                                                        | page |
|-------|--------------------------------------------------------------------------------------------------------------|------|
| 1     | Effect of pirfenidone on serum AST level (IU/L) in BCG induced liver fibrosis.                               | 49   |
| 2     | Effect of pirfenidone on serum ALT level (IU/L) in BCG induced liver fibrosis.                               | 52   |
| 3     | Effect of pirfenidone on liver tumor necrosis factor alpha level (pg/g) in BCG induced liver fibrosis.       | 55   |
| 4     | Effect of pirfenidone on liver transforming growth factor beta level (pg/g) in BCG induced liver fibrosis.   | 58   |
| 5     | Effect of pirfenidone on liver hydroxyproline level (mg/g) in BCG induced lung fibrosis.                     | 61   |
| 6     | Effect of pirfenidone on lung tumor necrosis factor alpha level (pg/g) in BCG induced lung fibrosis.         | 64   |
| 7     | Effect of pirfenidone on lung transforming growth factor beta level (pg/g) in BCG induced lung fibrosis.     | 67   |
| 8     | Effect of pirfenidone on lung hydroxyproline level (mg/g) in BCG induced lung fibrosis.                      | 70   |
| 9     | Effect of pirfenidone on mean area percentage of collagen fibers in the liver in BCG induced liver fibrosis. | 92   |
| 10    | Effect of pirfenidone on mean area percentage of collagen fibers in the lung in BCG induced lung fibrosis.   | 95   |

ı

#### List of Figures

| Figure | Title                                                                                                      | Page |
|--------|------------------------------------------------------------------------------------------------------------|------|
| 1      | Impact of components of the innate and adaptive                                                            | 12   |
|        | immunity on the activation of fibroblasts.                                                                 | 12   |
| 2      | Mechanism of NF-κB action.                                                                                 | 18   |
| 3      | Schematic diagram of Smad signal transduction.                                                             | 21   |
| 4      | Schematic overview of Jak/Stat signaling pathways.                                                         | 24   |
| 5      | Proposed mechanism of activation of hepatic stellate cells leading to fibrosis and cirrhosis.              | 27   |
| 6      | Mechanisms of pulmonary fibrosis.                                                                          | 32   |
| 7      | Effect of pirfenidone on serum AST level (IU/L) in BCG induced liver fibrosis.                             | 50   |
| 8      | Effect of pirfenidone on serum ALT level (IU/L) in BCG induced liver fibrosis.                             | 53   |
| 9      | Effect of pirfenidone on liver tumor necrosis factor alpha level (pg/g) in BCG induced liver fibrosis.     | 56   |
| 10     | Effect of pirfenidone on liver transforming growth factor beta level (pg/g) in BCG induced liver fibrosis. | 59   |
| 11     | Effect of pirfenidone on liver hydroxyproline level (mg/g) in BCG induced lung fibrosis.                   | 62   |
| 12     | Effect of pirfenidone on lung tumor necrosis factor alpha level (pg/g) in BCG induced lung fibrosis.       | 65   |
| 13     | Effect of pirfenidone on lung transforming growth factor beta level (pg/g) in BCG induced lung fibrosis.   | 68   |
| 14     | Effect of pirfenidone on lung hydroxyproline level (mg/g) in BCG induced lung fibrosis.                    | 71   |
| 15     | A photomicrograph of H&E liver section of a control group.                                                 | 73   |

| 16     | A photomicrograph of Masson's trichrome stain     | 73        |
|--------|---------------------------------------------------|-----------|
|        | liver section of a control group.                 |           |
| 17&18  | A photomicrograph of H&E liver section of a       | <b>75</b> |
|        | BCG group.                                        |           |
| 19&20  | A photomicrograph of H&E liver section of a       | <b>76</b> |
|        | BCG group                                         | 70        |
| 21     | A photomicrograph of Masson's trichrome stain     | 77        |
|        | liver section of a BCG group.                     | 11        |
| 22&23  | A photomicrograph of H&E liver section of a       | 70        |
| 220028 | BCG+Pirfenidone group.                            | <b>79</b> |
| 24     | A photomicrograph of Masson's trichrome stain     | 90        |
| 21     | liver section of a BCG+Pirfenidone group.         | 80        |
| 25&26  | A photomicrograph of H&E lung section of a        | 02        |
| 23020  | control group.                                    | 82        |
| 27     | A photomicrograph of Masson's trichrome stain     | 02        |
| 27     | lung section of a control group.                  | 83        |
| 28     | A photomicrograph of H&E lung section of a        | 0.5       |
| 20     | BCG group.                                        | 85        |
| 29&30  | A photomicrograph of H&E lung section of a        | 97        |
| 270030 | BCG group.                                        | 86        |
| 31     | A photomicrograph of Masson's trichrome stain     | 0.7       |
| 31     | lung section of a BCG group.                      | 87        |
| 32&33  | A photomicrograph of H&E lung section of a        | 00        |
| 320033 | BCG+pirfenidone group.                            | 89        |
| 34     | A photomicrograph of H&E lung section of a        | 00        |
| 34     | BCG+pirfenidone group.                            | 90        |
| 35     | A photomicrograph of Masson's trichrome stain     | 00        |
| 33     | lung section of a BCG+pirfenidone group.          | 90        |
|        | Effect of pirfenidone on mean area percentage of  |           |
| 36     | collagen fibers in the liver in BCG induced liver | 93        |
|        | fibrosis.                                         |           |
|        | Effect of pirfenidone on mean area percentage of  |           |
| 37     | collagen fibers in the lung in BCG induced lung   | 96        |
|        | fibrosis.                                         |           |

has a high efficacy against tuberculosis, however in immunocompromised individuals e.g. HIV sufferers are at risk of development of BCGitis syndrome (disseminated tuberculosis) which commonly affect lymph nodes, liver, lung, skin and bone (Talbot et al., 1997).

Recent advances indicate that organ fibrosis share core features that include epithelial and endothelial injury and dysfunction; abnormal proliferation of myofibroblasts, smooth muscle cells and stellate cells, and ECM deposition (Bonner, 2004; Speca et al., 2012). In addition, a variety of cytokines, chemokines, growth factors, and angiogenic factors regulate the activation of ECM-producing cells in profibrotic processes. As the severe tissue scarring that accompanies end-stage fibrosis is irreversible in most situations, greater efforts are still needed to identify the common and unique mechanisms of fibrosis, all of which need to be aimed at finding effective antifibrotic targets and drugs (Speca et al., 2012; Friedman et al., 2013).

It appears to be widely accepted that investigating the targets that are aberrantly expressed in animal models and fibrotic patients promises to unearth new therapeutic strategies for fibrotic diseases. Up to the present time numerous research efforts in the field of organ fibrosis have identified several polypeptide mediators important to the fibrotic process, such as transforming

growth factor (TGF- $\beta$ ) (Sureshbabu et al., 2011; Yu et al., 2013; Guo et al., 2014).

Hepatic injury, both acute and chronic, is a common pathology worldwide. Chronic liver injury can progress to liver fibrosis and end-stage cirrhosis in many patients. The main etiology of liver injury is represented by viral infections (hepatitis B virus, hepatitis C virus and hepatitis D virus), drugs and alcohol abuse (Sun et al., 2008).

Activated HSCs (hepatic stellate cells) are responsible for high levels of expression of  $\alpha$ -smooth muscle actin ( $\alpha$ -SMA), as well as for the additional synthesis of excess ECM (predominantly Type I and Type III collagen) (**Friedman, 2000; Iredale, 2001**). During liver fibrogenesis, it is believed that TGF- $\beta$  is widely considered to be a profibrogenic agent in liver injury and its release by necrotic hepatocytes may be one of the first signals for the activation of adjacent quiescent HSC (**Liu et al., 2006**).

As TGF-  $\beta$  plays an important role in liver injury it also plays a role in the pathogenesis of lung fibrosis, which is a major cause of suffering and death seen in pulmonary medicine, based upon its strong ECM inducing effect. It is thought that prolonged overproduction of TGF- $\beta$  induced by repeated chemical or biological injury leads to the accumulation of pathological