

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Study of Vascular Cell Adhesion Molecule-1 (VCAM-1) Expression in Oral Mucosal Tissues of

Lichen Planus Patients

52/

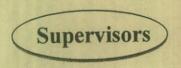
Thesis

Submitted to the Faculty of Oral and Dental Medicine, in
Partial Fulfillment of the Requirements for the Degree of
Doctor in Dental Surgery

(Oral Medicine and Periodontology)

By

Doaa Zakaria Mohamed Shehab El-Din


B.D.S., M.D.S. (Cairo)

Oral medicine and Periodontology Department,

Faculty of Oral and Dental Medicine

Cairo University

2002

Prof. Dr. Mahmoud Ibrahim El-Refai

Professor of Oral Medicine and Periodontology,

Faculty of Oral and Dental Medicine

Cairo University

Prof. Dr. Hala Kamal Abd El-Gaber

Professor of Oral Medicine and Periodontology,

Faculty of Oral and Dental Medicine

Ain Shams University

Prof. Dr. Safaa Mostafa El-Karaksy

Professor of Clinical Pathology

Faculty of Medicine

Cairo University

Acknowledgement

I would like to express my deepest gratitude and thanks to Prof. Dr. Mahmoud El-Refai, Professor of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Oral and Dental Medicine, Cairo University, for his unlimited effort, advice, valuable supervision and continous encouragement.

My deep thanks to *Prof Dr. Hala Kamal*, Professor of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Oral and Dental Medicine, Ain-Shams University, for her kind supervision and for help and observation she offered during the preparation of this work.

My great thanks to *Prof. Dr. Safaa El-Karaksy* professor of Clinical Pathology, Faculty of Medicine, Cairo University for her close supervision, continous encouragement and also for giving me generously of her time.

My grateful thanks to *Dr. Mona Salah*, Assistant Professor of Clinical Pathology, Faculty of Medicine, Cairo University for her help and encouragement and providing all possible facilities to complete this work.

Special thanks for *Prof. Dr. Ali El-Hendawy*, Professor of Pathology, Faculty of Medicine, Cairo University for his great help and valuable advice that guided me throughout this thesis.

Ayoub, Professor and Chairman of Oral Medicine, Periodontology and Oral Diagnosis Department, Faculty of Oral and Dental Medicine, Cairo University, for his continous guidance and encouragement.

Most sincere thanks to all members in Oral Medicine, Periodontology and Oral Diagnosis Department, Cairo University. To My Loving Caring, Supporting parents

To My sincere and Kind Husband

To My dear sister

To My lovely kids

Contents

	Page
♦ Introduction	1
♦ Review of Literature :	4
Lichen planus	4
Adhesion Molecules	22
Role of adhesion molecules in leukocytes migration	45
Vascular cell adhesion molecule-1.	57
♦ Aim of the Study.	67
♦ Subjects and Methods.	68
♦ Results.	82
♦ Discussion	101
• Conclusions	110
• Summary	111
References	113
Arabic Summan	

List of Tables

Tables		Page
Table (1)	Properties of some integrins involved in leukocyte binding to endothelium or extracellular matrix	26
Table (2)	β_2 integrins.	28
Table (3)	CD45 isoforms	43
Table (4)	Descriptive data of OLP patients	83
Table (5)	The scores of immunoperoxidase positivity regarding VCAM-1 density in the specimens of OLP patients before and after treatment	84
Table (6)	Comparison between the scores of the immunoperoxidase positivity regarding the VCAM-1 density in the specimens of OLP patients before and after treatment.	85
Table (7)	Comparison between OLP patients with atrophic lesions and those with bullous erosive lesions as regards VCAM-1 scores before treatment.	87
Table (8)	Comparison between OLP patients with atrophic lesions and those with bullous erosive lesions as regards VCAM-1 scores after treatment.	88
Table (9)	Comparison between the VCAM-1 scores in the specimens of female and male OLP patients before treatment.	91
Table (10)	Comparison between the VCAM-1 scores in the specimens of female and male OLP patients after treatment.	92
Table (11)	Comparison between OLP patients with skin lesions and those without skin lesions as regards VCAM-1 scores before treatment.	95
Table (12)	Comparison between OLP patients with skin lesions and those without skin lesions as regards VCAM-1 scores after treatment.	96

List of Figures

Figure		Page
Fig. (1)	direct naive lymphocyte to lymphoid tissues.	34
Fig. (2)	The structures of the three selectins.	35
Fig. (3)	Mad-CAM-1 with their immunoglobulin-like domains.	37
Fig. (4)	Cell-surface molecules of the Ig SF are important in the interaction of lymphocytes with APCs.	42
Fig. (5)	Adhesion molecules and leukocyte-endothelial interaction.	46
Fig. (6)	Cell adhesion molecules and chemokines involved in the first three steps of neutrophil extravasation.	48
Fig. (7)	The three steps of leukocyte adhesion	48
Fig. (8)	Examples of homing receptors and vascular addressins involved in selective trafficking of naive and effector T cells.	51
Fig. (9)	Steps in extravasation of a naive T cell through a high endothelial venule into a lymph node.	52
Fig. (10)	Armed effector T cells change their surface molecules so that they can home to sites of infection via the blood.	54
Fig. (11)	Photograph showing atrophic form of L.P. of the buccal mucosa.	69
Fig. (12)	Photograph showing atrophic form of L.P. of the buccal mucosa.	69
Fig. (13)	Photograph showing atrophic LP of the tongue.	
	Photograph showing atrophic form of L.P. of the buccal mucosa.	69

Fig. (14)	Photograph showing atrophic OLP of gingiva	71
Fig. (15)	Photograph showing LP of the lip	71
Fig. (16)	Photograph showing cutaneous LP in the forearm.	72
Fig. (17)	Photograph showing cutaneous LP of the leg.	72
Fig. (18)	Photograph showing histopathological features of OLP.	74
Fig. (19)	Photograph showing histopathological features of OLP.	75
Fig. (20)	Photograph showing the mouse monoclonal antibody-CD106	77
Fig. (21)	Photograph showing the UniTect TM detection system	77
Fig. (22)	Photograph showing the VCAM-1 positivity by immunoperoxidase method.	80
Fig. (23)	Photograph showing the VCAM-1 positivity by immunoperoxidase method.	80
Fig. (24)	Histogram showing VCAM-1 mean score values in OLP patients before and after treatment	97
Fig. (25)	Histogram showing comparison between scores of VCAM-1 positivity in atrophic and bullous erosive OLP patients before and after treatment	98
Fig. (26)	Histogram showing comparison between scores of VCAM-1 positivity in female and male OLP patients before and after treatment	99
Fig. (27)	Histogram showing comparison between scores of VCAM-1 positivity in OLP patients with skin lesions and those without skin lesions before and after treatment	100

List of Abbreviations

aa : Amino acid

AGEs : Advanced glycosylated end products

APCs : Antigen presenting cells

C3 : Complement 3.

CAMs : cell adhesion molecules

CD : Cluster of differentiation

CLA : Cutaneous lymphocyte associated antigen

COX-2 : Cyclo-oxygenase-2

CR3: Complement receptor 3.

CTLs: Cytotoxic T-lymphocytes

ELAM-1: Endothelial leukocyte adhesion molecule-1

E-SL-1 : E-selectin ligand-1

FDC: Follicular dendritic cells.

FN : Fibronectin

Gly-CAM-1: Glycosylation dependent cell adhesion molecule

GM-CSF: Granulocyte-macrophage colony stimulating factor

GMP-140 : Granule membrane protein-140

Gp Ilb/Illa: Glycoprotein IIb/IIIa

GVHD: Graft versus host disease

HEVs: High endothelial venules.

HLA: Human leukocyte antigen

HSP-70: Heat shock protein -70

HUVECs: Human umbilical vein endothelial cells

ICAM-1: Intercellular adhesion molecule-1

: Insulin dependant diabetes mellitus

IFN γ : Interferon gamma.