Types and Management of Chronic Intestinal Ischemia

A Systematic Review

Submitted for Partial Fulfillment of Master Degree in General Surgery

By

Khaled Ibrahim Mohammed El Beltagy M.B., B.CH.

Under Supervision of

Prof. Dr. Hesham Abd El Raouf El Akkad

Professor of General Surgery
Faculty of Medicine – Ain Shams University

Prof. Dr. Ahmed Adel Ain Shoka

Lecturer of General Surgery
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Wesham Abd**El Raouf El Akkad, Professor of General Surgery, Faculty of Medicine – Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ahmed**Adel Ain Shoka, Lecturer of General Surgery,
Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Khaled Ibrahim

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	10
Introduction	1
Aim of the Work	14
Review of Literature	
Anatomy	15
• Pathophysiology of Chronic Mesenteric Ischemia	40
Presentation and Diagnosis of Chronic Meser Ischemia	
■ Management of Chronic Mesenteric Ischemia	62
Discussion	90
Summary	103
Conclusion	106
References	108
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Clinical Presentation of Chronic Mese Ischemia	
Table (2):	Comparison of Risk Factors	95
Table (3):	Comparison of Open and Endovas Surgery for CMI by Decade	
Table (4):	Comparison of Outcomes in the 2 Periods by Treatment Method	

List of Figures

Fig.	No.	Title P	age No.
Figu	ıre (1):	BMFT	15
Figu	are (2):	Peritoneal reflections, forming mesente outlined on the posterior abdominal wal	•
Figu	ıre (3):	Abdominal aorta branches	18
Figu	ıre (4):	Angiogram of abdominal aorta	18
Figu	ıre (5):	Branches of celiac arterial trunk	19
Figu	ıre (6):	Angiogram of celiac arterial trunk	21
Figu	ıre (7):	Superior mesenteric arteriogram	22
Figu	ıre (8):	The arteries of the caecum and vermi	
Figu	ıre (9):	Branches of superior mesenteric artery.	24
Figu	ıre (10):	Angiogram of superior mesenteric artery	z26
Figu	are (11):	Distribution of the IMA	26
Figu	ıre (12):	Details of sigmoid colon arterial supply.	28
Figu	ıre (13):	Inferior mesenteric artery digital subtra- angiography arteriogram	
Figu	ıre (14):	Digital subtraction arteriogram of marginal artery running parallel to the of and anastomosing with the branches of superior mesenteric artery supplying right side of the colon	colon f the the
Figu	ıre (15):	Mesenteric angiogram in a patient Takayasu's arteritis	
Figu	ıre (16):	Collateral circulation of intestines	34

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (17):	Typical pancreaticoduodenal anatomy with separate pancreaticoduodenal arteries	inferior
Figure (18):	Venous drainage of the abdominal potential tract	
Figure (19):	A, Abdominal aortogram show occlusion of celiac trunk, SMA, and mesenteric artery at their ostia. B, C angiogram reveals 90% stenosis of smesenteric artery (SMA), large plaque at its ostium, and 50% celia stenosis	inferior Catheter superior calcified c artery
Figure (20):	Contrast-enhanced CT scan of the a shows on maximum intensity pr (MIP) in a sagittal oblique orie Obliquaxial multiplanar recons (MPR) at the level of the origin superior mesenteric artery	ojection ntation. truction of the
Figure (21):	Schematic drawing of additional and lateral retraction of the abdominobtained incising the musculoapot attachments along the site of the process	nal wall neurotic xiphoid
Figure (22):	Transperitoneal exposure of the sup aorta and the celiac artery	
Figure (23):	The superior mesenteric artery is expected the base of the transverse meson most patients	colon in

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (24):	A left medial visceral rotation is approach to the celiac and mesenteric arteries, similar to the used to treat patients with a which extend to the suprarenal lev	superior exposure neurysms
Figure (25):	A supraceliac aortic based mesente begins with making an elliptical aor the anterior wall of the aorta, o obliquely	totomy on ften done
Figure (26):	The steps of performing a suprace reconstruction to the celiac and mesenteric arteries are illustrated.	superior
Figure (27):	The challenge with originating a the superior mesenteric artery infrarenal aorta is that the graf- made too long, and it kinks or buck the small bowel is returned to it position	from the t often is kles when ts normal
Figure (28):	Transaortic visceral artery endar and completion superior mendarterectomy	nesenteric
Figure (29):	Angioplasty and stenting of a foca of the superior mesenteric artestenosis using brachial approach	ry (SMA)
Figure (30):	An important technical point is to	visualize 83
Figure (31):	Bifurcated stent technique	85
Figure (32):	Treatment of in-stent resteno placement of covered balloon-exstent	xpandable

List of Figures (Cont...)

Fig. No.	•	Title	Page N	10.
Figure (33):	surgery trea	tment group	val comparing open with endovascular	101
Figure (34):	symptoms treatment	comparing group w	from recurrent open surgery ith endovascular	101

List of Abbreviations

Full term Abb. ACA.....Anterior ceacal artery AMI.....Acute mesenteric ischemia BFBlood flow CA.....Celiac artery CABG......Coronary artery bypass grafting CADCoronary artery disease CHFCongestive heart failure CI......Confidence intervals CMI.....Chronic mesenteric ischemia COPD......Chronic obstructive pulmonary disease CT.....Computed tomography CTA.....Computed tomography angiography DUSDuplex ultrasonography ETEndoscopic treatment FMD.....Fibromuscular dysplasia IMA.....Inferior mesenteric artery IPDAInferior pancreaticodoudenal artery MAS.....Mesenteric artery stenosis MBV.....Mean blood velocity MI.....Myocardial infarction MIPMaximum intensity projection MPR.....Multiplantar reconstruction MRA.....Magnetic resonance angiography MVMesenteric vasculitis

List of Abbreviations (Cont...)

Abb.	Full term
MVI	Mesenteric vascular ischemia
<i>OD</i>	
OT	Open treatment
PCA	Posterior ceacal artery
PV	Portal vein
PVD	Peripheral vascular disease
<i>SMA</i>	Superior mesenteric artery
<i>SMV</i>	Superior mesenteric vein
<i>VLS</i>	Visible light spectroscopy

Introduction

hronic intestinal ischemia is unusual but important cause of abdominal pain. Although this condition accounts for only 5% of all intestinal ischemic events, it can have significant clinical consequences (*Sreenarashimhaiah*, 2005).

Chronic intestinal ischemia is uncommon condition that accounts for about 2% of revascularization procedures in

patients with atheroma. Most patients are older than 60 years; women are affected three times more often than men. Ischemia occurs when the blood supply to the intestines is inadequate as a result of lesions affecting one or more of the three mesenteric arteries: the celiac artery, the superior mesenteric artery and inferior mesenteric artery (Loffroy, 2009). The most common cause of chronic intestinal ischemia is atherosclerotic occlusion or severe stenosis of the mesenteric arteries. A stenosis of >50% is present in 18% of patients older than 65 years, but very few are symptomatic (Chang et al., 2006).

The clinical presentation is seen in patient mostly between 60 and 80 years old, with or without concurrent disease in other vascular beds. This manifestation of systemic arteriosclerosis carries the risk factors of: smoking, hypertension, dyslipidemia and coronary artery disease. Some of these patients have associated comorbidities including chronic obstructive pulmonary disease, diabetes, aortic artery aneurysm and peripheral vascular disease. The severity of clinical presentation depends on:

- 1. The site, grade, and cause of vascular obstruction.
- 2. The degree of collateralization.
- 3. The stage of the disease (Sanjiv, 2001).

Diagnosis can often be made by non-invasive methods such as computerized axial tomographic angiography, magnetic

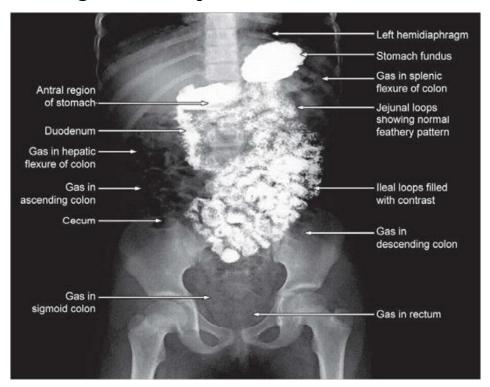
resonance angiography, and duplex ultrasonography as well as by invasive catheter angiography (Sreenarashimhaiah, 2005).

Angiography was traditionally the gold standard for the diagnosis of intestinal ischemia. The development multidetector row computed tomography (CT), however, has permitted detailed analysis of vascular flow that was never before possible (Herbert and Steele, 2007). The use of endovascular therapy for intestinal ischemia is predominantly limited to treatment of chronic form the disease (Herbert and Steele, 2007).

Various surgical techniques are available for splanchnic revascularization including transaortic endarterectomy, antegrade or retrograde bypass grafting, angioplasty with or without stenting (Illuminati et al., 2004).

AIM OF THE WORK

The objective of this systematic review is to assess the value of different types of management of chronic intestinal ischemia (open surgery versus endovascular interventions).


Chapter 1

ANATOMY

Small Intestine:

The normal adult human small intestinal length varies from about 275-850 cm as measured from the duodeno-jejunal flexure at autopsy or surgery and tends to be shorter in women. The full intestinal length is achieved by 10 years of age (*Nightingale*, 2001).

Radiological anatomy:

Figure (1): BMFT (BARIUM MEAL FOLLOW-THROUGH) study-Supine posteroanterior (PA) view of stomach with ileal loops (*Hariqbal& Parvez.*, 2013).