Ain Shams University Faculty of Science Chemistry Department

"Determination of Rasagiline Mesylate in dosage form and in human plasma and its application in bioequivalence study"

A Thesis

"Submitted for the degree of Master of Science As a partial fulfillment for requirements of the master Science"

$\mathbf{B}\mathbf{y}$

Hassan Mohamed Hassan Soliman

(Bachelor of Science of Damietta, Mansoura University, 2007)

Under supervision of

Prof. Dr. Mostafa Mohamed Hassan Khalil

Professor of Inorganic Chemistry

Chemistry department, Faculty of Science, Ain Shams University

Prof. Dr. Ahmed Hassan Elshafeey

Professor of Pharmaceutics and industrial pharmacy,

Faculty of Pharmacy, Cairo University

Acknowledgment

Firstly, it is a pleasure to express my deepest prayerful thanks to "ALLAH" who gave me everything I have and gave me the ability to finish this work.

I would like to express my sincere gratitude to my advisor **Prof. Dr. Mostafa Mohamed Hassan Khalil,** Professor of Inorganic Chemistry, Chemistry department, Faculty of Science, Ain Shams University for the continuous support of my Masters study, for his patience, motivation and immense knowledge. His guidance helped me in all the time.

No words can express my cordial thanks and appreciation to **Prof. Dr. Ahmed Hassan Elshafeey,** Professor of Pharmaceutics and industrial pharmacy, Faculty of Pharmacy, Cairo University for his kind supervision, valuable help, enthusiasm, continuous spiritual support and encouragement.

My grateful appreciation and hearty thanks to **Prof. Dr.**Ibrahim Badr professor and head of department of chemistry, Ain

Shams university who offered me a lot of experience and valuable assistance.

Special thanks to all members and my colleagues at Genuine
Research Center who supported me to finish this work.

Faculty of Science Chemistry Department

Name: Hassan Mohamed Hassan Soliman

Scientific degree: Master in Science (Analytical

chemistry)

Department: Chemistry department

Faculty: Faculty of Science

University: Ain Shams University

Ain Shams University Faculty of Science Chemistry Department

Determination of Rasagiline Mesylate in dosage form and in human plasma and its application in bioequivalence study

By

Hassan Mohamed Hassan Soliman

(Bachelor of Science of Damietta, Mansoura University, 2007)

To

Chemistry department, Faculty of Science, Ain Shams University

Supervised by

Prof. Dr. Mostafa Mohamed Hassan Khalil
Professor of Inorganic Chemistry,
Chemistry department, Faculty of Science, Ain Shams University
Prof. Dr. Ahmed Hassan Elshafeey
Professor of Pharmaceutics and industrial pharmacy,

Head of chemistry department

Faculty of Pharmacy, Cairo University

Prof. Dr. Ibrahim H. A. Badr 2017

Faculty of Science Chemistry Department

"Determination of Rasagiline Mesylate in dosage form and in human plasma and its application in bioequivalence study"

A Thesis submitted by

Hassan Mohamed Hassan Soliman

Submitted for the degree of Master in Science (Analytical chemistry)

This thesis for master degree in analytical chemistry has been approved by:

Name Signature

Prof. Dr. Mostafa Mohamed Hassan Khalil

Professor of Inorganic Chemistry
Chemistry department, Faculty of Science, Ain Shams University

Prof. Dr. Abd El-Aziz Youssif

Professor of Analytical Chemistry
Chemistry department, Faculty of Science, Al-Azhar University

A. Prof. Dr. Maha Abdel Monem Hegazy

Associate professor of analytical chemistry Faculty of Pharmacy, Cairo University

Prof. Dr. Ibrahim. H. A. Badr

Head of chemistry department, Faculty of Science, Ain Shams University Name: Hassan Mohamed Hassan Soliman.

Research facility: Genuine research center, Cairo, Egypt.

Title of thesis:

"Determination of Rasagiline Mesylate in dosage form and in human plasma and its application in bioequivalence study"

Abstract

Bioequivalence study was performed for the comparison of generic Rasagiline tablet against Rasagiline reference listed drug in both in vitro and in vivo. For the in vitro part: A reverse phase high performance liquid chromatographic method was developed and validated for the determination of Rasagiline Mesylate in the dosage form. Chromatographic separation was carried out on a C_{18} column using a mobile phase consisting of (acetonitrile: 0.02 M ammonium acetate, 60:40, V/V). The flow rate was 1.0 ml/min. Fluorescence detector was employed with excitation at 210 nm and emission at 288 nm. The calibration curve was linear over the range (0.5–3.00) µg/ml with a correlation coefficient of 0.998. The simplicity and rapidity of the developed method made it very suitable for routine analysis of Rasagiline Mesylate in the dosage form. While in the vivo study, Liquid chromatography mass spectrometric method was used to quantitate Rasagiline in human plasma. Liquid-liquid extraction with Ethyl acetate was used to extract Rasagiline from plasma using Clonazepam as the internal standard, The column was Agilent C18 (3.6 µm, 50 x 4.6 mm) and the mobile phase was (acetonitrile, 0.01 M ammonium formate 80: 20, V/V at pH 5.5) adjusted with formic acid, multiple reaction monitoring mode via positive electrospray ionization was used to monitor the transitions m/z 172.1

→m/z (117.1) for Rasagiline, and m/z 316.963 →m/z 270 for Clonazepam. The method was validated according to FDA guidelines and then employed in the bioequivalence to measure Rasagiline Mesylate in human plasma and compare the equivalence of generic Rasagiline tablet (Parkintreat 1 mg Tablets Inspire Pharmaceutical Company, Egypt) versus reference listed drug (Azilect® 1 mg Tablets from Teva Pharmaceuticals, USA) after a single oral dose administration of each to twenty four healthy adults under fasting conditions.

Key words: Bioequivalence, Bioanalytical validation, Dissolution, Fluorescence, HPLC, Tandem mass spectrometry

Contents

List of tables	IV
List of figures	VI
List of abbreviations	XIII
1. Introduction and literature review	1
1.1 Parkinson's disease	1
1.2 Bioequivalence	2
1.2.1 Definition and history	2
1.2.2 The purpose of conducting bioequivalence studies	4
1.2.3 Design and conduct of bioequivalence studies	5
1.3 Dissolution testing	5
1.3.1 Biopharmaceutics classification system of drugs (BCS)	7
1.3.2 United States Pharmacopoeia (USP) methods for	r 7
dissolution testing	
1.4 High performance liquid chromatography	9
1.4.1 Fluorescence detection	11
1.5 LC-MS/MS in bioanalysis	14
1.5.1 Sample Preparation in bioanalysis	14
1.5.2 Internal standard in LC-MS/MS	17
1.5.3 Introduction to LC-MS/MS in bioanalysis	18
1.5.4 Basic principles of mass spectrometry	18
1.5.5 Liquid chromatography for LC-MS/MS bioanalysis	22
1.6 Validation of bioanalytical methods	23
1.6.1 Linearity	24
1.6.2 Accuracy and precision	25
1.6.3 Recovery	26
1.6.4 Stability	26
1.6.4.1 Freeze and Thaw Stability	27
1.6.4.2 Short-Term Temperature Stability	27
1.6.4.3 Long-Term Stability	27
1.6.4.4 Stock Solution Stability	28
1.6.4.5 Post-Preparative Stability	28

1.6.5 Dilution	28
1.7 Tested products	29
1.8 Pharmacological action	29
1.9 Different methods for determination of Rasagiline Mesylate	30
2. Materials and methods	39
2.1 Materials and methods (part 1)	39
2.1.1 Reagents and chemicals	39
2.1.2 Instruments	40
2.1.3 Standards and sample solutions preparation	41
2.1.4 Assay of Rasagiline Mesylate from Its Tablet Dosage	42
Form	
2.1.5 Validation of the developed method	43
2.1.5.1 Specificity	43
2.1.5.2 Linearity and range	43
2.1.5.3 Accuracy and Precision	43
2.1.5.4 Robustness	44
2.1.6 Dissolution Test	44
2.1.6.1 Procedure	44
2.1.6.2 Calculations	45
2.2 Materials and methods (part 2)	47
2.2.1 Objective	47
2.2.2 Experimental Design	47
2.2.3 Clinical Study Methodology	47
2.2.3.1 Products Evaluated	47
2.2.3.2 Study Design	48
2.2.3.3 Study Site	48
2.2.3.4 Selection of Subjects	48
2.2.3.5 Screening of subject of the study	49
2.2.4 Bioanalytical Methodology	50
2.2.4.1 Bioanalytical Method Development	50
2.2.4.2 Instrumentation	53
2.2.4.3 Bioanalytical Method Validation	55
2.2.5 Analysis of Clinical Study Samples	60

2.2.5.1 Calibration Curve Acceptance Criteria	61
2.2.5.2 Quality Control Sample Acceptance Criteria	61
2.2.5.3 Blank and Zero samples Acceptance Criteria	61
2.2.6 Pharmacokinetic and Statistical Analysis	62
3. Results and discussion	63
3.1 Results and discussion part of in vitro comparison	63
3.1.1 Chromatography optimization	63
3.1.2 Validation	63
3.1.2.1 Specificity	63
3.1.2.2 Linearity and range	65
3.1.2.3 Accuracy and precision	65
3.1.2.4 Robustness	67
3.1.3 Dissolution test	68
3.2 Results of in vivo comparison	72
3.2.1 Clinical Study Results	72
3.2.2 Bioanalytical methodology	74
3.2.2.1 Bioanalytical method development	74
3.2.1.2 Bioanalytical Method Validation Results	77
3.2.3 Analysis of Clinical Study Samples	97
3.2.4 Pharmacokinetic and Statistical Analysis	103
4: Conclusion	106
5: Summary	107
6: References	112
7: Appendix	134

List of tables

Table number	Page no.
Table 1. Products details of TEST Product (Parkintreat) and	29
REFERENCE Product (Azilect®) 1 mg tablets	
Table 2. Reference standards for Rasagiline and Clonazepam	39
Table 3: Different stages of Study plan of study plan	48
Table 4: Laboratory parameters assessed for each volunteer during	49
screening procedure	77
Table 5: Materials and Reagents used in the bioanalytical method	51
Table 6: Auxiliary equipment used in the study	52
Table 7 : Calibrators preparation for Rasagiline used for constructing	58
calibration curves	50
Table 8: Preparation of quality control samples for Rasagiline	58
Table 9: Recovery results for Rasagiline Mesylate in Vitro	66
Table 10: Intraday and interday precision of the method	67
Table 11: Robustness of the method 1	68
Table 12: Cumulative % Dissolution Data of Rasagiline from	
Azilect® 1 mg Tablets (Teva Pharmaceuticals, USA), the	69
Reference product after (minutes)	
Table 13: Cumulative % Dissolution Data of Rasagiline from	
Parkintreat 1 mg Tablets (SEDICO For Inspire	=0
Pharmaceutical Co. (IPC Pharma), Egypt), the Test product	70
after (minutes)	
Table 14: Demographic data for subjects	73
Table 15: Inter-Day and Intra-Day Accuracy and Precision Data for	02
LLOQ and QCL	83
Table 16: Inter-Day and Intra-Day Accuracy and Precision data for	0.4
QCM and QCH	84
Table 17: Recovery data for Rasagiline for QCL, QCM and QCH	0.5
for the bioanalytical method	85
Table 18: Recovery data for Clonazepam (internal standard) for	86
the bioanalytical method	00
Table 19: Summary of calibration data corresponding to Rasagiline	87
Table 20: Back-calculated Rasagiline concentrations measured in	88
human plasma	00
Table 21: Stability data of Rasagiline under freeze-thaw conditions	90
Table 22: Short-term temperature stability of spiked plasma samples	91
for low and high quality control samples	71

Table 23: Summary of stability data related to prolonged storage	92
conditions (-70°C) of Rasagiline	12
Table 24: Stock solution stability of Rasagiline	93
Table 25: Stock solution stability of Clonazepam	94
Table 26: Autosampler stability data for Rasagiline	95
Table 27: dry extract stability data for Rasagiline	96
Table 28: Individual plasma concentrations of Rasagiline versus	
time after single dose administration of Treatment A TEST	99
Product Parkintreat 1 mg tablets for subjects (SEDICO For	
Inspire Pharmaceutical Co. (IPC Pharma), Egypt) 1-16	
Table 29: Individual plasma concentrations of Rasagiline versus time	
after single dose administration of Treatment A TEST	
Product Parkintreat 1 mg Tablets (SEDICO For Inspire	100
Pharmaceutical Co. (IPC Pharma), Egypt) for subjects 17-	
24	
Table 30: Individual plasma concentrations of Rasagiline versus	
time after single dose administration of Treatment B	101
REFERENCE Product Azilect® 1 mg Tablets (Teva	101
Pharmaceuticals, USA) for subjects 1-16	
Table 31: Individual plasma concentrations of Rasagiline versus	
time after single dose administration of Treatment B	102
REFERENCE Product Azilect® 1 mg Tablets (Teva	102
Pharmaceuticals, USA) for subjects 17-24	
Table 32: Mean pharmacokinetic parameters for test and reference	105
products	103

List of figures

Figure 1: Dissolution process for solid oral dosage form	6
Figure 2: Emission spectra of Rasagiline Mesylate	40
Figure 3: Rasagiline Molecular Weight: 267.34; Chemical Formula: C13H17NO3S	50
Figure 4: clonazepam molecular weight: 315.715; chemical formula C15H10ClN3O3	51
Figure 5: Representative fluorescence chromatograms of Rasagiline Mesylate (A) chromatogram of blank, (B) chromatogram of (2 μg/ml) Rasagiline Mesylate in mobile phase. (C) Chromatogram of (2 μg/ml) Rasagiline Mesylate in tablet extract	64
Figure 6: Linearity range of Rasagiline Mesylate from (0.5 -3.00 μg/ml)	65
Figure 7: Dissolution Profile of Rasagiline from Parkintreat 1 mg Tablets (SEDICO For Inspire Pharmaceutical Co. (IPC Pharma), Egypt), the test product and Azilect® 1 mg Tablets (Teva Pharmaceuticals, USA), the reference product.	71
Figure 8: mass spectra of Rasagiline Mesylate	74
Figure 9: Representative chromatogram for lower limit of quantitation 0.1 ng/ml and the internal standard	75
Figure 10: Representative chromatogram for quality control sample 0.3 ng/ml and the internal standard	75
Figure 11: Representative chromatogram for quality control medium sample 20 ng/ml and the internal standard	76
Figure 12: Representative chromatogram for quality control high sample 32 ng/ml and the internal standard	76
Figure 13: Representative chromatograms for three different sources of plasma (A, B, and C).	78
Figure 14: Representative chromatograms for other three different sources of plasma (D, E, and F)	79

Figure 15: Representative chromatograms for potential interferences from common OTC drugs including:	
interferences from common of c drugs including.	80
Ibuprofen, Nicotine and Paracetamol	
Figure 16: Representative chromatograms for potential	
interferences from Acetyl Salicylic Acid, Ascorbic Acid.	81
Figure 17: Calibration curve representing average area ratio (N =	
6) at each concentration level) of (Rasagiline /	00
Clonazepam) versus concentration of Rasagiline, in the	89
concentrations ranging: 0.1-40 (ng/ml)	
Figure 18: Linear presentation for Rasagiline mean plasma	
	104
Treatment TEST Product and reference Product	107
Figure 19: Linear presentation (Plot 1) and semi-logarithmic	
presentation (Plot 2) for Rasagiline mean plasma	
concentration after single dose administration of	134
Treatment A TEST Product Parkintreat 1 mg Tablets	10.
(SEDICO For Inspire Pharmaceutical Co. (IPC Pharma),	
Egypt).	
Figure 20: Linear presentation (Plot 1) and semi-logarithmic	
presentation (Plot 2) for Rasagiline mean plasma	
concentration after single dose administration of	135
Treatment B REFERENCE Product Azilect® 1 mg	
Tablets (Teva Pharmaceuticals, USA).	
Figure 21: Linear presentation (Plot 1) and semi-logarithmic	
presentation (Plot2) for Rasagiline individual plasma	
	136
Treatment A TEST Parkintreat 1 mg Tablets (SEDICO	100
For Inspire Pharmaceutical Co. (IPC Pharma), Egypt).	
Figure 22: Linear presentation (Plot 1) and semi-logarithmic	
presentation (Plot 2) for Rasagiline individual plasma	
	127
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	137
Treatment B REFERENCE Product Azilect® 1 mg	
Tablets (Teva Pharmaceuticals, USA).	
Figure 23: Linear presentation (Plot 1) and semi-logarithmic	
presentation (Plot 2) for Subject No.1 Rasagiline plasma	138
concentration (ng/ml) after single dose administration of	150
Treatment A TEST Product Parkintreat 1 mg Tablets	