

Development of a Transit Signal Priority Algorithm for Urban Corridors

A Thesis

Submitted to Faculty of Engineering
Ain Shams University in Fulfillment of the Requirement for M. Sc. Degree
in Civil Engineering
(Transportation Planning and Traffic Engineering)

Prepared by Nada Ahmed Ibrahim Mahmoud

B.Sc. in Civil Engineering, June 2013 Faculty of Engineering, Ain Shams University

Supervisors

Prof. Dr. Khaled Adel Ismail El-Araby,

Professor of Transportation Planning and Traffic Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Associate Prof. Mohamed El-Faramawy Abdel-Rahman El Esawey

Assosciate Professor of Transportation Planning and Traffic Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Development of a Transit Signal Priority Algorithm for Urban Corridors

A Thesis
Submitted to Faculty of Engineering
Ain Shams University in Fulfillment of the Requirement for M. Sc.
Degree in Civil Engineering
(Transportation Planning and Traffic Engineering)

Prepared by Nada Ahmed Ibrahim Mahmoud

B.Sc. in Civil Engineering, June 2013 Faculty of Engineering, Ain Shams University

THESIS APPROVAL

EXAMINERS COMMITTEE

SIGNATURE

Prof. Dr. Mohammed Maher Shahin

Professor of Transportation Planning and Traffic Engineering. Faculty of Engineering, Alexandria University

Prof. Dr. Hatem Mohammed Abdel-Latif

Professor of Transportation Planning and Traffic Engineering. Faculty of Engineering, Ain Shams University.

Prof. Dr. Khaled Adel Ismail El-Araby

Professor of Transportation Planning and Traffic Engineering. Faculty of Engineering, Ain Shams University.

Date:/ 2017

Statement

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M. Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Public Works, Faculty of Engineering, Ain Shams University, from 2015 to 2017.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Date: / /2017 **Signature:**

Name: Nada Ahmed Ibrahim

Researcher Data

Name: Nada Ahmed Ibrahim Mahmoud

Date of Birth: 1st August 1991

Place of Birth: Cairo, Egypt

Last Academic Degree: Bachelor of Science in Civil Engineering

Field of Specialization: Civil Engineering

University Issued the Degree: Ain Shams University

Date of Issued Degree: June 2013

Current Job: Demonstrator, Public Works Dept., Faculty of

Engineering, Ain Shams University

Acknowledgements

It will be extremely difficult to acknowledge all the people who helped me through the past two years; first I am so grateful to my main advisor Prof. Dr. Khaled El Araby, with whom it has been my privilege to work. I thank him for being supportive, helpful, patient, inspiring and extremely professional throughout the research period and I wish he knows the deep appreciation that I hold for him. Also, I would like to thank my second advisor Associate Prof. Mohamed El Esawy for his great help and support.

I would like to express my sincere gratitude to Prof. Albania Nissan, my big sister, who helped me through Hit4Med Tempus project while being in Stockholm, Sweden. I would like to thank her for her hospitality in KTH, her support, and for always giving me the positive energy to achieve what I want. Also, I am so grateful to Prof. Johan Wahlstedt who helped me and was always available whenever I needed any advice.

I thank PTV Group, and specially Sonal Ahuja, Thomas Schwerdtfeger, Dario Menichetti, and Marijana Matanovic for giving me the chance to be an intern in PTV MENA Region DMCC in Dubai. Also, I thank all of them for giving me the opportunity to take their advanced Vissim training during this internship, I am so grateful for their support, encouragement, guidance, inspiration, and making me feel that I am a part of PTV Group while being there.

I would like to thank PTV Group again for offering me a free academic Vissim license, which helped me through my research and made it much easier with their help.

Special thanks to Dr. Atef Garib, my second father, for all his encouragement, support, effort, time, and care. He is my role model in life, and he will always be.

I thank my parents and my siblings who always encouraged me for years to achieve my dreams, and for being by my side through my tough periods. I thank my best friends for their help, their support, and for solving my problems in my distress times.

Finally, I thank my colleagues, all Traffic and Transportation staff, all public works staff, the head of public works department and Faculty of

Engineering, Ain Shams University, for always being by my side throughout my research.

Abstract

This research developed actuated signal plans for bus priority using green split optimization and the boundary conditions for cycle lengths done through Synchro® signal optimization tool. A case study was applied on a corridor's segment that consists of four consecutive intersections on El Nahas Corridor at Nasr City, Cairo. This corridor besides being one of the most congested corridors in Cairo, has also one of the deployments of the exclusive bus lanes in an urban corridor in Cairo, Egypt. Pre-timed signal optimization was carried out using Synchro®. 8.0 for two different corridor geometric configurations: first configuration including exclusive bus lanes in the middle, and the other configuration removing the bus lanes and increasing the capacity by adding one lane in each direction (mixed traffic lanes). The optimization was carried out for split signal phasing plans, and protected signal phasing plans for peak and off-peak periods. This optimization resulted in optimized cycle lengths for each intersection in each time period as well as the optimized signal plans for the two optimized scenarios based upon protected and split phasing plans.

PTV Vissim 7.0 traffic micro-simulation tool was used in order to simulate the optimized signal plans for different exclusive bus lanes configurations for split signal phasing, protected signal phasing, and transit signal priority (TSP) scenarios. The simulation was also conducted for mixed traffic lanes configurations for split signal phasing, protected signal phasing, TSP, intermediate U-turns and left turn movements prohibited at intersections, and TSP with intermediate U-turns and left turn movements prohibited at intersections scenarios. The simulations results were used to compare the effectiveness of TSP and non-TSP scenarios on the test corridor.

Before analyzing the various TSP scenarios, a sensitivity analysis was carried out in order to decide the best cycle length for the four intersections on the corridor by using the green splits percentages from the optimized signal timings. A tailored bus priority algorithm was created using VisVAP 2.16 © simulation language. Buses were provided priority in the intersection after each red time in each other approach in the intersection not exceeding the maximum red time.

The developed TSP algorithm used mainly red truncation, green extension, phase insertion, and/or phase rotation according to bus arrival pattern. On the basis of MOEs for TSP and non-TSP scenarios, it was

found out that transit signal priority strategy with mixed traffic scenario that includes U-turns and prohibiting left turn movements at intersections was the recommended strategy to use for accommodating bus flows in congested urban corridors.

Keywords: Actuated Signal Plans, Bus Priority Measures, Exclusive bus lanes, Signal Optimization, Transit Signal Priority (TSP).

Table of Contents

ABSTRACT	III
LIST OF FIGURES	
LIST OF TABLES	XIII
1. INTRODUCTION	1
1.1 BACKGROUND	
1.2 PROBLEM DEFINITION	
1.3 SCOPE	
1.4 OBJECTIVES	
1.6 METHODOLOGY	
1.6.1 Choice of Corridor	
1.6.2 Analysis Techniques	6
1.6.3 Data Needed	6
1.6.4 Data Collection	7
1.6.5 Intersections' Optimization	7
1.6.6 Micro-Simulation Analysis	7
1.6.7 Comparison between the Results	7
1.6.8 Outputs	8
1.7 THESIS STRUCTURE	8
2. LITERATURE REVIEW	11
2.1 TRANSIT SIGNAL PRIORITY (TSP)	
2.1.1 TSP Control Strategies	12
2.2 RELEVANT TRANSIT AND TRAFFIC PARAMETERS	
2.3 EVALUATION OF TSP STRATEGIES	
2.3.1 Optimization and Simulation of TSP Strategies	17
2.3.2 Commonly Used TSP Strategies and MOEs in Relevant	•
Studies	
2.4 CONCLUSIONS AND IMPACTS ON RESEARCH	
2.4.1 Conclusions	
2.4.2 Impacts on Research	28
3. DATA COLLECTION	
3.1 CHOICE OF CORRIDOR	32

	3.2 BASELINE CONDITIONS	
	3.2.1 Intersection Geometry	
	3.2.2 Traffic Volumes	
	3.2.3 Bus Arrival Patterns	. 42
	3.2.4 Bus Stops Locations	. 43
	3.2.5 Average Speeds	. 44
	3.2.6 Pedestrian Counts	. 44
	3.3 CONCLUSIONS	.46
4.	OPTIMIZATION OF INTERSECTIONS	.47
	4.1 INTRODUCTION	
	4.2 OPTIMIZED SCENARIOS	
	4.3 BUILDING UP THE NETWORK	
	4.4 EXISTING SITUATION: BASELINE SCENARIO USED	.49
	4.5 FIRST SCENARIO: EXCLUSIVE BUS LANES	50
	CONFIGURATION	
	4.5.2 Protected Phases Optimization	
	4.5.3 Scenarios Assessment	
	4.6 SECOND CONFIGURATION: MIXED TRAFFIC LANES	
	4.6.1 Split Phases Optimization	
	4.6.2 Protected Phases Optimization for mixed Traffic Lanes	
	4.6.3 Scenarios Assessment	. 56
	4.7 OVERALL OPTIMIZATION RESULTS	
	4.8 CONCLUSIONS	
5.	SIMULATION OF NON-TSP SCENARIOS	.61
	5.1 BUILDING UP THE NETWORK FOR SIMULATION	
	5.2 NON-TSP ANALYSIS (AM PEAK)	
	5.2.1 Exclusive Bus Lanes Configuration with Split Signal	
	Phasing	. 64
	5.2.2 Exclusive Bus Lanes Configuration with Protected Signal	
	Phasing	. 66
	5.2.3 Mixed Traffic Lanes Configuration with Split Signal	
	Phasing	. 67

5.2.4 Mixed Traffic Lanes Configuration with Protected Signal Phasing	68
5.2.5 Mixed Traffic Lanes Configuration With U-Turns and Prohibite Left-Turn Movements at Intersections	
5.2.6 Overall Results and Conclusion	71
6. SIMULATION OF TSP SCENARIOS. 6.1 INTRODUCTION. 6.2 CYCLE LENGTHS SENSITIVITY ANALYSIS AND TSP	75
ANALYSIS	
6.2.2 Mixed Traffic Lanes Configuration with TSP	
6.2.3 Mixed Traffic Lanes Configuration with U-Turns and with TSP	
6.3 OFF-PEAK ANALYSIS AND RESULTS FOR MIXED TRAF LANES CONFIGURATION	.84
6.3.2 Sensitivity Analysis for TSP Scenario	86
6.3.3 TSP Analysis	88
6.4 CONCLUSIONS	
7. OVERALL SIMULATION RESULTS	97
7.1 AM PEAK RESULTS	
7.1.1 Average Travel Time Comparison	
7.1.2 Average Vehicle Delay Comparison	
7.1.3 Average Bus Delay Comparison	
7.1.4 Average Node Delay Comparison	
7.1.5 Average Network Performance Comparison	.103
7.2 OFF-PEAK RESULTS FOR MIXED TRAFFIC LANES	101
CONFIGURATION	
7.2.2 Average Vehicle Delay Comparison	
• • •	
7.2.3 Average Bus Delay Comparison	
1.2.4 Average Nodes Delay Comparison	. IU/