BIOCHEMICAL STUDIES OF SELECTED PHARMACEUTICAL INDUSTRIAL WASTEWATER COMPOUNDS ON RATS

Submitted By Ola Ahmed Rashed Rashoud

B.Sc. Science(Biochemistry), Faculty of Science, Ain Shams University, 1999

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2015

APPROVAL SHEET

BIOCHEMICAL STUDIES OF SELECTED PHARMACEUTICAL INDUSTRIAL WASTEWATER COMPOUNDS ON RATS

Submitted By

Ola Ahmed Rashed Rashoud

B.Sc. Science(Biochemistry), Faculty of Science, Ain Shams University, 1999

This thesis Towards a Master Degree in Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. El Sayed Mohamed El Mahdy

Prof. of Biochemistry Faculty of Science Helwan University

2-Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Prof. of Analytical Chemistry and Head of Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

3-Prof. Dr. Magdy Mahmoud Mohamed

Prof. of Biochemistry Faculty of Science Ain Shams University

BIOCHEMICAL STUDIES OF SELECTED PHARMACEUTICAL INDUSTRIAL WASTEWATER COMPOUNDS ON RATS

Submitted By

Ola Ahmed Rashed Rashoud

B.Sc. Science(Biochemistry), Faculty of Science, Ain Shams University, 1999

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Magdy Mahmoud Mohamed

Prof. of Biochemistry Faculty of Science Ain Shams University

2-Dr. Nancy magdy Hana

Prof. of Pharmaceutical Analytical Chemistry Faculty of Pharmacy Ain Shams University

ABSTRACT

Widespread occurrence of pharmaceuticals has started to attract attention as aquatic micropollutants that might have been affecting the ecological system in trace amounts. The risks associated with their introduction into wildlife habitats are becoming an important issue for both regulators and the pharmaceutical industry, because of incomplete elimination of pharmaceuticals and their metabolites from wastewater. In this study three different classes of pharmaceuticals i.e. glucocorticosteroid (dexamethasone), analgesics (paracetamol) and stimulant (caffeine) were selected for studying their effects on environmental life. The concentration of them is determined in industrial wastewater using liquid chromatography tandem mass spectrometry (LC-MS-MS) with electrospray ionization (ESI) and each was analyzed by a single multiple reaction monitoring (MRM) transition. The concentration levels of dexamethasone, paracetamol, and caffeine in wastewater were 245 ng/ml, 7216 ng/ml and 9356 ng/ml, respectively. Oral treatments of 0.25 mg/kg b.wt, 7.5 mg/kg b.wt, 9.5 mg/kg b.wt of dexamethasone, paracetamol, and caffeine respectively was studied daily over a period of three months of treatment showed a variable influence on many biochemical and haematological parameters. Dexamethasone showed an effective increase in chronic levels of triglyceride, liver enzymes (ALT, AST, and GGT), total bilirubin, neutrophils and monocytes. Paracetamol showed highly significant increase in serum creatinine, (GGT), total protein, albumin and monocyte counts. But caffeine showed highly significant increase in creatinine, liver enzymes (ALT, GGT), total protein, albumin, total white blood cells, monocyte and eosinophil counts.

Contents

List of tables	<u>I</u>
List of figures	III
List of abbreviations	VI
Introduction	1
Aim of the work	2
1-Literature Review	3
1.1 Occurrence of pharmaceuticals in wastewater	3
1.2 Sources of pharmaceuticals in wastewater	4
1.3 Conventional or traditional sewage treatment removal	7
1.4 Advances in analytical and detection methods	8
1.4-(a) Sample preparation	11
1.4-(b) Liquid chromatography and mass spectrometry	. 13
1.5 Environmental Risk	14
1.6 The selected pharmaceuticals	18
1.6.1. Dexamethasone	19
1.6.2 .Paracetamol:	25
1-6-3. Caffeine	34
2- Materials and methods	42
2.1- Materials:	42
2.1. 1. Water analysis	42
2.1. 1.1. Active Drug and chemicals:	42
2.1.1.2. LC/MS/MS Instrumentation	42
2.1.1.3. Water Sample collection & Preparation	42
2. 1. 1.4. Preparation of standard solutions:	42
2.1. 2. Blood analysis	43
2.1. 2.1. Animal design	43

2. 1 .2.2. Blood sample collection	44
2.1. 2.3. Instrumentation	44
2. 1.2.4. Parameters to be investigated	44
2.2- Methods:	46
2.2. 1. Water analysis	46
2.2. 1.1. Solid phase extraction:	46
2. 2.1.2. Instrument setup and calibration curve	47
2. 2 . 1.2.1 Standards optimization	47
2. 2 . 1.2.1 Instrument parameters	48
2. 2 . 1.2.1 Calibration curve	49
2.2.2. Blood analysis	50
2.2. 2.1. Determination of Glucose	50
2.2. 2.2. Determination of Lipid profile	52
2.2. 2.2.1 Determination of Cholesterol	52
2.2. 2.2.2 Determination of Triglycerides	54
2.2. 2.2.3 Determination of HDL-Cholesterol	56
2.2. 2.3. Determination of Kidney function tests	58
2.2. 2.3.1 Determination of Creatinine	58
2.2. 2.3.2 Determination of Urea	60
2.2. 2.3.3 Determination of Uric acid	61
2.2. 2.4. Determination of Liver function tests	63
2.2. 2.4.1 Determination of ALT	63
2.2. 2.4.2 Determination of AST	64
2.2. 2.4.3 Determination of GGT	66
2.2. 2.4.4 Determination of T.BIL	67
2.2.2.4.5 Determination of ALP	68
2.2. 2.4.6 Determination of TP	70

2.2.2.4.7 Determination of ALB	71
2.2.C. Statistical analysis	72
3- Results	73
4- Discussion	104
5- Conclusion	120
6- Sammary	121
7- Recommendation	123
8- References	125

List of Tables

Table No.	Title	Page
Table (2.1)	MRM method parameters selected in positive and negative ion mode.	47
Table (2.2)	Instrument Parameters	48
Table (3.1)	Quantitative result of four industrial wastewater samples.	73
Table (3.2)	Effect of oral administration of dexamethasone on glucose & lipid profile.	81
Table (3.3)	Effect of oral administration of dexamethasone on kidney function.	83
Table (3.4)	Effect of oral administration of Dexamethasone on Liver function.	84
Table (3.5)	Effect of oral administration of dexamethasone on HB, Blood indices and platelets	86
Table (3.6)	Effect of oral administration of dexamethasone on WBCs and differential leucocyte count.	88
Table (3.7)	Effect of oral administration of paracetamol on glucose & lipid profile.	89
Table (3.8)	Effect of oral administration of paracetamol on kidney function.	91

Table No.	Title	Page
Table (3.9)	Effect of oral administration of paracetamol on Liver function.	92
Table (3.10)	Effect of treatment of rats with paracetamol on haematological parameters	93
Table (3.11)	Effect of treatment of rats with paracetamol on WBCs and differential leucocyte count	95
Table (3.12)	Effect of Caffeine treatment on Glucose and lipid profile compared	96
Table (3.13)	Effect of Caffeine treatment on kidney function.	98
Table(3.14)	Effect of Caffeine on Liver function compared to normal control group	99
Table (3.15)	Effect of oral administration of caffeine on haematological parameters	101
Table (3.16)	Effect of oral administration of caffeine on WBCs and Differential white cell count	103

List of Figures

Figure No.	Title	Page
Figure (1.1)	Sources of pharmaceuticals in the natural aquatic environment	5
Figure (1.2)	Analytical methods applied to detect the most common pharmaceuticals in wastewater	10
Figure (1.3)	Common SPE steps	12
Figure (1.4)	The principle of the multiple reaction Monitoring (MRM) in triple quadruple mass spectrometer	14
Figure (1.5)	Therapeutic classes detected in the environment, expressed in relative percentage.	19
Figure (1.6)	Metabolism of Acetaminophen	27
Figure (1.7)	Overview of the pharmacokinetics of caffeine in humans.	36
Figure (1.8)	Physiological actions of caffeine.	37
Figure (2.1)	The total ion chromatogram (TIC) in positive and negative ion mode for standard mixture of five pharmaceutical standards.	48
Figure (2.2)	a-e Five points calibration curve for salbutamol, PCM, caffeine, timolol and dexamethasone respectively	49
Figure (3.1)	a,b Quantitative window show PCM in Sample1	74
Figure (3.2)	a,b Quantitative window show caffeine in Sample1	75
Figure (3.3)	a,b Quantitative window show dexamethasone in Sample1	76

Figure No.	Title	Page
Figure (3.4)	MRM extracted chromatogram for three pharmaceutical standards (PCM, caffeine and dexamethasone). Only one transition shown.	77
Figure (3.5)	MRM chromatogram showed panel (A) calibrator standard compared to panel (B) four industrial wastewater samples in retention time.	78
Figure (3.6)	Total ion chromatogram and extracted ion chromatogram for wastewater sample one	79
Fig (3.7)	The Change % of glucose & lipid profile during dexamethasone treatment.	82
Fig (3.8)	The Change % of kidney functions during dexamethasone treatment.	83
Fig (3.9)	a,b The Change % of Liver functions during dexamethasone treatment.	85
Fig (3.10)	The Change % of HB, Blood indices and plateletes during dexamethasone treatment.	87
Fig (3.11)	The Change % of WBCs & differential during dexamethasone treatment.	88
Fig (3.12)	The Change % of glucose & lipid profile during paracetamol treatment.	90
Fig (3.13)	The Change % of kidney profile during paracetamol treatment	91
Fig (3.14)	The Change % of liver profile during paracetamol treatment	92

Figure No.	Title	Page
Figure (3.15)	The Change % of haematological parameters during paracetamol treatment	94
Figure (3.16)	The Change % of WBCs and differential during paracetamol treatment	95
Figure (3.17)	The Change % of Glucose and Lipid profile during caffeine treatment	97
Figure (3.18)	The Change % of Kidney function during caffeine treatment	98
Figure (3.19)	The Change % of Liver function during caffeine treatment	100
Figure (3.20)	The Change % of haematological parameters during caffeine treatment	102
Figure (3.21)	The Change % of WBCs and Differential white cell count during caffeine treatment	103

List of abbreviations

ACM Acetaminophen

ALP Alkaline phosphatase

ALT Alanine aminotransferase

APAP N-acetyl-para aminophenol

API Atmospheric pressure ionization

APIs Active pharmaceutical ingredients

AST Aspartate aminotransferase

AST Aspartate aminotransferase

COX Cycloxygenase

DEX Dexamethasone

ESI Electrospray ionization

FDA Food and Drug Administration

GC-MS Gas chromatography with mass spectrometry

GFR Glomerular filtration rate

GGT Gamma-glutamyltransferase

GSH Glutathione

Hb Haemoglobin

HDL High density lipoprotein

HLB hydrophilic lipophilic balanced

HPLC, High performance liquid chromatography

LC-MS Liquid chromatography coupled to mass spectrometry

LDL Low density lipoprotein

LLE Liquid lquid extraction

MAX Mixed mode anion exchange

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean corpuscular volume

MCX Mixed mode cation exchange

MRM Multiple reaction monitoring

MS2 Tandem spectrometry

M-WWTPs Municipal wastewater treatment plants

NAPQI N-acetyl-p-benzoquinonimine

NO Nitrogen oxide

NSAIDs Non-steroidal anti-inflammatory drugs

PCM Paracetamol

PCV Packed cell volume

PFF Pharmaceutical formulation facilities

PhCs Pharmaceuticals

PPCPs Pharmaceuticals and personal care products

PPF Pharmaceutical production facilities

P-WWTPs Pharmaceutical manufacture wastewater treatment plants

RBC Red blood cell

SPE Solid phase extraction

T.BIL Total Bilirubin

TNF-a Tumor necrosis factor a

VLDL Very low density lipoprotein

WBCs White blood cells

WWTPs Wastewater treatment plants